
MP-DASH: Adaptive Video Streaming Over
Preference-Aware Multipath

Bo Han Feng Qian∗ Lusheng Ji Vijay Gopalakrishnan
AT&T Labs – Research ∗Indiana University

Bedminster, NJ Bloomington, IN
{bohan, lji, gvijay}@research.att.com fengqian@indiana.edu

ABSTRACT
Compared with using only a single wireless path such as
WiFi, leveraging multipath (e.g., WiFi and cellular) can
dramatically improve users’ quality of experience (QoE)
for mobile video streaming. However, Multipath TCP
(MPTCP), the de-facto multipath solution, lacks the support
to prioritize one path over another. When applied to video
streaming, it may cause undesired network usage such as
substantial over-utilization of the metered cellular link. In
this paper, we propose MP-DASH, a multipath framework
for video streaming with the awareness of network interface
preferences from users. The basic idea behind MP-DASH
is to strategically schedule video chunks’ delivery and thus
satisfy user preferences. MP-DASH can work with a wide
range of off-the-shelf video rate adaptation algorithms with
very small changes. Our extensive field studies at 33
locations in three U.S. states suggest that MP-DASH is very
effective: it can reduce cellular usage by up to 99% and
radio energy consumption by up to 85% with negligible
degradation of QoE, compared with off-the-shelf MPTCP.

Keywords
Multipath TCP; DASH; Adaptive Video Streaming; WiFi;
Cellular; Preference

1. INTRODUCTION
Video streaming has become one of the most critical

applications on mobile devices. A recent study indicates
that video accounted for 55% of total mobile traffic in
2015, and this percentage will increase to 75% by 2020 [4].
However, mobile users’ quality of experience (QoE) for
video streaming is still often far from satisfactory, especially

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999606

under challenging network conditions such as unstable WiFi
connectivity and mobility. Based on our field studies at 33
locations such as restaurants and hotels, we found in about
80% of locations their open WiFi does not provide stable
throughput for streaming a 1080p video at its highest quality,
while the combined bandwidth of WiFi and cellular almost
always does (§2.2). Although LTE may be enough at most
locations, users may want to limit their cellular data usage.

The above findings motivate us to consider streaming
over multipath, a common feature on today’s laptops, smart-
phones, and even wearables. Multipath TCP (MPTCP [15])
is the de-facto multipath solution allowing applications to
transparently use multiple paths. It can dramatically improve
the QoE of video streaming by providing additional network
capacity and robust communications (e.g., facilitating
smooth handover). However, it is challenging for MPTCP to
support the network interface preference required by mobile
users (e.g., preferring WiFi over LTE when at home) [20].
As a consequence, when streaming video over MPTCP,
it may incur undesired network usage such as substantial
over-utilization of the metered cellular link. This will
considerably reduce users’ incentive of using multipath due
to concerns of cellular data limits.

In this paper, we propose MP-DASH, a novel multipath
video streaming framework. The overall goal is to
enhance MPTCP to support adaptive video streaming under
user-specified interface preferences. Dynamic Adaptive
Streaming over HTTP (DASH) is the state-of-the-art
standard of video streaming [35]. Unlike other Internet
video protocols such as Adobe HDS [2], Apple HLS [3],
and Microsoft Smooth Streaming [6], DASH is agnostic of
the video codec and can use any codec including H.264 and
H.265. DASH is becoming the dominant video streaming
solution, due to the extreme success of HTTP that is easy to
deploy, middlebox-friendly, and supported by infrastructures
such as CDN [41, 42].

MP-DASH has two major components: the MP-DASH
scheduler and the video adapter. The scheduler takes as
input the interface preference from users, as well as video
chunks’ size and delivery deadline from the video player.
It then intelligently determines the best fetching strategy
of the video chunks over multipath by leveraging their

129

http://dx.doi.org/10.1145/2999572.2999606

delay tolerant nature. The key challenge is the scheduling
algorithm needs to be online, lightweight, robust, and
generalizable to different user preferences.

The MP-DASH video adapter is a lightweight add-
on that makes an existing off-the-shelf DASH algorithm
multipath-friendly. Lying in the middle between the original
DASH algorithm and the MP-DASH scheduler, it handles
the interactions between them. This is also challenging
because the interactions are not only complex, but also
different across different DASH rate adaptation algorithms.
These two building blocks (MP-DASH scheduler and video
adapter) work in synergy to improve the efficiency of video
delivery through preference-aware multipath.

We have instantiated the MP-DASH framework in the
context of improving video delivery over WiFi and cellular
networks, with the goal of reducing the cellular data usage
while maintaining user QoE. Specifically, we made the
following contributions in this paper.
• We design the MP-DASH scheduler as an overlay of
MPTCP (§4). It serves as a building block for multipath-
friendly video streaming. In addition, it can benefit a wide
range of other applications with delay-tolerant transfers.
•We investigate how to use the MP-DASH scheduler for im-
proving DASH video delivery. We study two representative
categories of DASH rate adaptations (throughput-based and
buffer-based) and propose solutions for them to effectively
use MP-DASH with only a few lines of code change (§5).
• We implement the MP-DASH scheduler in the Linux
kernel and MP-DASH enhanced state-of-the-art DASH
algorithms such as FESTIVE [24] and BBA [23] on an open-
source video player [5]. We also build a first cross-layer
multipath video analysis tool to facilitate our research (§6).
•We conduct extensive in-field experiments to study mobile
video performance over multipath in realistic settings, by
visiting 33 public places in three states of the U.S. The
results show that MP-DASH can reduce cellular usage by
up to 99% and radio energy consumption by up to 85% with
negligible degradation of QoE (§7).

2. MOTIVATIONS
In this section, we provide the background of MPTCP and

motivate MP-DASH through both real-world measurement
studies and controlled experiments.

2.1 Multipath TCP (MPTCP)
MPTCP [15] is a standardized multipath solution allowing

applications to transparently use multiple paths. MPTCP
has already been implemented in the Linux kernel [31].
However, it has no ability for users to specify their
preference of how to utilize wireless interfaces [20]. Instead,
the path utilization is mainly determined by the MPTCP
scheduling algorithms. The default scheduler of MPTCP
prefers low latency paths: when multiple subflows have
spaces in their congestion windows, it selects the subflow
with the smallest RTT estimation to transmit the next packet.
MPTCP also supports round-robin scheduling.

In this paper, we consider “decoupled” congestion con-
trol, i.e., each path runs congestion control independently.

This is the typical congestion control configuration for
mobile multipath [18]. The reason is that the goal of coupled
congestion control [39] is mainly to offer fairness at shared
bottlenecks; however, the bottleneck is usually the last mile
for wireless networks which is unlikely to be shared by WiFi
and cellular networks. We next demonstrate that blindly
applying MPTCP scheduling algorithms to DASH video can
lead to severe resource inefficiency such as excessive use of
cellular data.

2.2 Measurement Study in the Wild
We consider mobile video streaming using WiFi and

cellular. To motivate the need for multipath, we first answer
the question of whether WiFi alone can provide the best
video streaming experience. We measure the throughput
and RTT of the WiFi networks at 33 locations in three
far-apart U.S. states. The locations cover a wide range of
public places including both indoor environments, such as
airport, hotel, and restaurant, and outdoor parking lot. They
represent three different scenarios: (1) WiFi only is never
able to support the highest bitrate of a 1080p video, (2) WiFi
can sometimes play the best quality, but not always, and (3)
WiFi can almost always stably support the highest bitrate.
Among these locations, 64%, 15%, and 21% of them belong
to the respective scenarios.

The results imply that in the real world, it is very likely the
public WiFi itself cannot provide the best video streaming
experience. The poor WiFi performance is usually caused
by either bandwidth throttling (e.g., applied by hotels [1])
or limited backhaul connectivity [25]. Thus, upgrading to
high throughput WiFi, such as 802.11ac, may not always
solve the problem. In contrast, MPTCP can sustain the
highest playback bitrate at all locations (we consider the
HD video case separately in §7.3.5). This indicates that
MPTCP is indeed useful for improving the QoE of mobile
video streaming in diverse realistic settings.

Although MPTCP is helpful, it causes unnecessary use
of cellular data, in particular in scenario (3) where cellular
is not needed. For example, the measured WiFi and LTE
throughputs at an office building are 12.1 and 14.6 Mbps.
If a user plays a 1080p DASH video with the highest bitrate
close to 4.0 Mbps, WiFi alone can already sustain the highest
rate. However, when streaming the video over MPTCP
blindly, more than half of data is still sent over LTE.

2.3 Controlled Experiments
We next employ controlled in-lab experiments to detail

the issue of MPTCP overusing cellular data when playing a
DASH video. The following observations also exist in real-
world experiments (§7) and we use controlled experiments
only for easy presentation. Suppose a user wants to play
the same video mentioned above with the highest rate which
is around 4.0 Mbps. However, the bandwidth of WiFi
network is only 3.8 Mbps. To enjoy the best video-watching
experience, she can also leverage the LTE dongle on her
laptop and play this video over MPTCP. The throughput of
LTE network is 3.0 Mbps. Figure 1 plots the throughputs of
WiFi and LTE subflows and the entire MPTCP flow in the
steady playing state.

130

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (second)

MPTCP WiFi LTE

Figure 1: WiFi/LTE throughput when playing a DASH video
over MPTCP.

There are two key observations from Figure 1. First, to
download video chunks, the capacity of LTE link is almost
fully utilized, as the MPTCP schedulers are not aware of
user preferences. Since data limits on LTE networks are
common, ideally the user wants to use only 0.2 Mbps of
the LTE bandwidth to fill the gap. This is the problem
we aim to solve through making the scheduling decision
user-preference-aware. In §7.3.3, we will also demonstrate
through extensive field studies the real-world prevalence of
this problem.

We aim to address the above issue by taking advantage
of the fact that video chunks are delay-tolerant. As shown
in Figure 1, when the player’s buffer is full, after finishing
downloading a chunk, the networks will be idle for a while
before fetching the next chunk (i.e., waiting for the player to
consume its buffer). Thus, the QoE will not be affected if
the chunks arrive a bit late, as long as the playback deadline
is met. This offers opportunities of tweaking the MPTCP
scheduler to reduce cellular data usage.

3. THE MP-DASH FRAMEWORK
We propose MP-DASH, a network interface preference

aware multipath framework for DASH video streaming.

3.1 MP-DASH System Design
There are three major requirements for MP-DASH: First,

it should be able to accommodate the interface preferences
specified by users and schedule the video delivery based on
the preferences. Second, there needs to be a mechanism for
video-specific information to be exchanged between a video
player and the MP-DASH framework. Third, the overall
system needs to be scalable and lightweight.

To satisfy them, our proposed framework consists of
two key components: the MP-DASH scheduler and the
MP-DASH video adapter, as shown in Figure 2. The
scheduler enhances MPTCP in two aspects. First, it is
aware of the preference of multiple paths. Second, it is
aware of the deadline of each video chunk. By using these
pieces of information, the scheduler strategically manages
the network paths with the goal of meeting deadlines while
satisfying user-specified preference, as to be detailed in §4.

The MP-DASH video adapter is a lightweight add-on
that makes existing DASH algorithms multipath-friendly.

Deadline-Aware
Scheduler (§4)

MPTCP Scheduler

Kernel Space

MPTCP Module

User Space

DASH Video Client

Video Rate Adaptation
MP-DASH Adapter (§5)

Deadline-Aware
Scheduler (§4)

MPTCP Scheduler

Subflow Management

MPTCP Module

DASH Video
Server

MP-DASH
Decision

Chunk Size
& Deadline

Aggregated
Throughput

Client Server

Policies
From User

Video
Chunks

Figure 2: System architecture of MP-DASH.

Lying in the middle between the original DASH algorithm
and the MP-DASH scheduler, its main job is to inform
the MP-DASH scheduler through a unified interface of
each chunk’s size and deadline. Also, depending on the
specific characteristics of a DASH algorithm category, the
MP-DASH adapter may have additional interactions with the
DASH algorithm, as to be elaborated in §5.

3.2 Specific Design Decisions
We now detail specific aspects of the MP-DASH

framework.
The Interface of the MP-DASH Scheduler. The

MP-DASH scheduler exposes a simple and unified interface
to video applications, similar to existing approaches [20,
34]. As shown in Figure 2, the interface consists of
two parts. First, the scheduler offers a socket option,
MP_DASH_ENABLE, to convey the data size S and the
deadline D from the user space to the kernel. Upon the
reception of this information, MP-DASH is activated for
the next S bytes of data. MP-DASH is deactivated when
any of the following happens: (1) S bytes have been
successfully transferred, (2) the deadline has passed, or
(3) the application explicitly deactivates MP-DASH using
MP_DASH_DISABLE, another socket option. The second part
of the interface enables a DASH adapter to obtain necessary
information (e.g., the aggregated throughput across all paths
as shown in Figure 2) for rate adaptation. This interface is
needed because a video player does not have the visibility
of the network conditions of all paths since MPTCP is
oblivious to the player. We demonstrate its usage in §5.

Function Split between Client and Server. The
MP-DASH scheduler should ideally run at the video
streaming server where it can directly distribute traffic onto
different paths. However, a video server does not run the
DASH logic and thus the MP-DASH adapter should reside
on the client side. We split the scheduler into two parts, the
decision function on the client and the enforcement function
on the server. The decision function determines how to
manage the paths (e.g., whether the cellular subflow should
be enabled) based on the information from the video player,
and notifies the enforcement function of the decision using
a reserved bit in the MPTCP option. This design makes
MP-DASH scalable as the server side becomes stateless.

131

Interface for the User. As a self-contained framework,
MP-DASH allows users to specify the multipath policies
such as interface preferences. Our current prototype
supports two policies in the context of optimizing video
delivery over wireless networks: preferring WiFi over
cellular, and preferring cellular over WiFi. Despite the
former being the common case, there are situations where a
user prefers the latter (e.g., when the user is moving). Given
the two policies are symmetric, in the rest of the paper we
focus on the first one. We enforce the policy by setting the
preferred interface as the primary interface of MPTCP. More
sophisticated policies can be plugged in by only changing
the scheduler without affecting the DASH adapter (§4).

4. DEADLINE-AWARE MP-DASH
SCHEDULER

We design a deadline-aware MP-DASH scheduler that
takes both the interface preference and the delay-tolerant
nature of video traffic into consideration. The preference
can be quantified by cost associated with each path. The cost
could be data usage, energy consumption, or a combination
of both, configured either statically or dynamically. The goal
of the MP-DASH scheduler is to meet the playback deadline
of a chunk while minimizing the overall cost. Deadline-
awareness has been investigated in various scenarios such as
base station scheduling for multimedia traffic [14] and data
center TCP [38]. Different from existing works, MP-DASH
targets at DASH video delivery over multipath.

General Formulation. We first provide a general
formulation of MP-DASH’s scheduling algorithm. Let N ≥
1 be the number of network paths. Let S be the chunk size
and D (in discretized time slots) be its download deadline.
The duration of each time slot is d. Let b(i, j) be the
available bandwidth of interface i at time slot j (1 ≤ i ≤ N ,
0 ≤ j < D), and c(i, j) be the unit-data cost of using
interface i at time j. x(i, j) is a binary decision variable
where x(i, j)=1 iff interface i is used at time j, otherwise
x(i, j)=0. The goal is to minimize the overall cost

C =
∑

1≤i≤N,0≤j<D

c(i, j)b(i, j)x(i, j)d

under the constraint that the deadline is met:∑
1≤i≤N,0≤j<D

b(i, j)x(i, j)d ≥ S

This is a 0-1 min knapsack problem [16]: we have
D ∗ N items whose weights and values are b(i, j)d and
c(i, j)b(i, j)d, respectively. We want to choose items such
that the total weight is at least S and the total value
is minimized. According to the duality for the Integer
Linear Programming, this is equivalent to the traditional
0/1-knapsack problem (proof omitted). We can solve it
optimally using dynamic programming with the complexity
of O(N ∗D ∗ S), or approximately by heuristic algorithms.

Practical Online Algorithm. In practice, MP-DASH
needs to run in an online fashion where the throughput
estimation is continuously updated. Meanwhile, when
applied on today’s mobile devices, the formulation can

Algorithm 1 Deadline-Aware Scheduling Algorithm
1: Input: S – video chunk size and D – deadline window;
2: sentBytes = 0;
3: cellularEnabled = FALSE;
4: timeStart = gettimeofday();
5: while (sentBytes < S) do
6: if S − sentBytes > packetSize then
7: n = packetSize;
8: else
9: n = S − sentBytes;

10: end if
11: Get n bytes from the chunk and send them using

MPTCP;
12: sentBytes+ = n;
13: timeNow = gettimeofday();
14: timeSpent = timeNow − timeStart;
15: Get the estimated WiFi throughput RWiFi;
16: if (α×D−timeSpent)×RWiFi > (S−sentBytes)

&& cellularEnabled == TRUE then
17: Disable the cellular path;
18: end if
19: if (α×D−timeSpent)×RWiFi < (S−sentBytes)

&& cellularEnabled == FALSE then
20: Enable the cellular path;
21: end if
22: end while

be simplified by assuming N=2 (only WiFi and cellular
interfaces). In the following we assume WiFi is always
preferred over cellular. Thus, we can set c(WiFi, j) <
c(cell, j) for ∀j. A similar greedy algorithm can be devised
to handle general numerical costs of multiple paths, as to be
described later.

MP-DASH leverages the existing MPTCP schedulers
to distribute packets over multiple paths and adds the
intelligence of how to control the cellular subflow.
Essentially, MP-DASH introduces both deadline-awareness
and priority into these schedulers. The online version of
MP-DASH is depicted in Algorithm 1. It has two input
parameters, the video chunk size S and the length of
download time window D (from when a download starts
till the deadline). MP-DASH drives the WiFi subflow to
its full capacity and turns off the cellular subflow at the
beginning. It then monitors the progress of data transfer and
turns the cellular subflow on if necessary, i.e., when the WiFi
path underperforms and the deadline would be missed if we
continue using WiFi alone. The while loop is responsible for
sending the chunk’s data using MPTCP (line 11). RWiFi in
line 15 is the current estimation of WiFi throughput. After
sending out each packet, MP-DASH checks if WiFi alone
is sufficient to transmit the remaining data and disables the
cellular subflow when possible (lines 16–18). Since the WiFi
throughput may change over time, it also needs to check if
the cellular subflow should be enabled again, in case using
WiFi alone cannot fully deliver the remaining data before the
deadline (lines 19–21). To be conservative, our target finish
time could be ahead of the real deadline by setting α in lines

132

16 and 19 to be less than 1, to compensate for estimation
inaccuracy of WiFi throughput. The smaller the value of α
is, the less likely we will miss the actual deadline. However,
a smaller α also leads to more data over cellular links.

A key design decision we make is, if MP-DASH decides
to use cellular, it should utilize the maximum bandwidth by
transmitting as quickly as possible. Another naive solution
is to throttle the cellular bandwidth just to be what is needed.
We will demonstrate its drawbacks in §7.3.1.

Optimality. As a special case (N=2), Algorithm 1 yields
the optimal solution (in terms of cellular usage) if we can
always accurately estimate the bandwidth till the deadline
(proof omitted). Intuitively, assume a solution that uses even
fewer cellular bytes exists. This means we either disable
cellular too late or enable cellular too early. However,
neither can happen if we have the perfect knowledge of the
bandwidth in lines 16 and 19.

The online MP-DASH scheduling algorithm can be
generalized to multiple interfaces with varying costs. For
example, we can first sort the interfaces based on their costs,
and then feed data from low-cost to high-cost interfaces,
by turning on/off the paths accordingly. This cost-varying
version is an approximation algorithm and may not be
optimal. Meanwhile, the interface to applications remains
the same, which allows the same MP-DASH enhanced
DASH algorithm in our framework to work under diverse
multipath contexts with different numbers of paths or
different cost/preference profiles.

5. MP-DASH VIDEO ADAPTER
We leverage the MP-DASH scheduler as a building block

to improve the cellular usage and energy efficiency for
DASH video over multipath. It is challenging due to the
following two reasons.
• The interaction between the DASH rate adaptation
algorithms and the MP-DASH scheduler is complex.
In particular, there exists a control loop: MP-DASH’s
scheduling decision will affect DASH’s rate selection, which
in turn impacts MP-DASH’s scheduling through settings of
chunk size and deadline. This is quite different from using
the MP-DASH scheduler to download a single file where the
application and the scheduler are very loosely coupled.
• There are many DASH rate control algorithms. Ideally,
we want to plug the MP-DASH scheduler into them in
the same (and simple) manner. However, we found due
to their different rate adaptation logics (e.g., throughput
vs. buffer-based), DASH algorithms incur different cross-
layer interactions with the scheduler. This inevitably
requires modifications to DASH algorithms on a category-
by-category basis, although we try to minimize the changes.

5.1 The Basic Approach
We first provide the background of rate adaptation

algorithms for DASH. In a DASH system, a video is
split into multiple chunks of the same play time (usually
1 to 15 seconds) and each video chunk is encoded with
multiple discrete bitrate levels. A video player can switch
between different bitrate streams at a chunk boundary,

as the chunks are time-wise aligned. Thus, it requires
an algorithm to select the chunks’ bitrates for achieving
an optimal QoE. There are largely two categories of
DASH rate adaptation algorithms, throughput-based and
buffer-based. The throughput-based adaptation adjusts the
encoding rate of chunks based on the estimated throughput,
which indicates the future network capacity. For instance,
FESTIVE [24] uses the harmonic mean of previous chunks’
throughputs to estimate the future throughput, which dictates
the rate selection. On the other hand, Buffer Based
Adaptation (BBA) [23] chooses the bitrate based on a video
player’s buffer occupancy level, which implicitly encodes
information of the network capacity when the video playing
is at the steady state.

We now describe the basic approach of integrating the
MP-DASH scheduler with DASH video. Recall in §4 that
MP-DASH’s scheduling algorithm is invoked at the chunk
level, and the video player needs to provide the chunk size
and deadline to MP-DASH. Currently the chunk size is
not a mandatory field in the DASH manifest file. Despite
this, in practice, we can almost always find the chunk size
in the “Content-Length” header field of HTTP responses.
This issue has also been raised by a recent work [42], which
advocates that chunk size is a key requirement for DASH
control algorithms and thus should be a mandatory part of
the DASH manifest.

We then consider how to set the deadline D. Intuitively,
it should be configured in such a way that if we do not
receive the chunk at time t0 + D, the playback will stall
(t0 is the current time). It is, however, too risky in that
missing the deadline due to inaccurate throughput estimation
or temporary wireless blackout will cause significant QoE
degradation. In fact, preventing this is exactly the purpose of
having playback buffers that act as a cushion for unpredicted
network quality changes.

We instead set the deadline by keeping the buffer
occupancy not decrease. Specifically, we propose two
approaches: duration-based and rate-based. For the
duration-based setting, D is a video chunk’s playout
duration. For example, the deadline of a 4-second video
chunk is simply 4 seconds. For the rate-based scheme,
D is the chunk size divided by the nominal (i.e., average)
video encoding bitrate. For example, for a 1 MB chunk in a
quality level of 4.0 Mbps average bitrate,D is set to 1*8/4=2
seconds. The difference between them is, the duration-based
scheme aims to maintain the buffer level in the short term: a
player consumes D-second buffer to download a D-second
chunk which is then supplied to its buffer, thus leading to
a stable buffer level. In contrast, the rate-based setting
attempts to maintain the buffer level in the long run, since
it leverages the average bitrate of the entire video.

We further design a mechanism called deadline extension
that makes MP-DASH even more efficient. The intuition is,
it is unlikely for a stall to happen when the buffer occupancy
is close to becoming full. In this “safe region”, we can
relax (i.e., extend) the deadline to give more opportunities
for MP-DASH to reduce the cellular usage. Assuming the
buffer level threshold for enabling deadline extension is Φ

133

and the current buffer level is b > Φ, we then extend the
deadline by b − Φ (both b and Φ have the unit of seconds).
The threshold Φ incurs a tradeoff between the cellular usage
and playback robustness. We discuss its setting for different
DASH algorithms in §5.2.1 and §5.2.2.

We extend the deadline when the buffer level is high.
Then how to deal with the situation of low buffer level?
This happens, for example, during the initial buffering phase
or a path temporarily blacks out. Thus, we disable the
MP-DASH scheduler for MPTCP when the buffer level is
lower than a threshold Ω. The setting of Ω also depends on
the DASH algorithms, which we discuss next.

5.2 Handling Different Categories of
DASH Rate Adaptation Algorithms

Following the unified high-level framework described
in §5.1, we now detail how to seamlessly integrate the
MP-DASH scheduler with different categories of DASH rate
adaptation algorithms.

5.2.1 Throughput-based DASH Rate Adaptation
A throughput-based rate adaptation algorithm uses previ-

ous chunks’ throughputs to estimate the future throughput,
which is then mapped to the quality level of the next chunk
using algorithm-specific logics. The throughput-quality
mapping logic is transparent to MP-DASH. However, the
player is not aware of multipath and may under-estimate the
actual MPTCP throughput when the MP-DASH scheduler
disables the cellular path. To address this issue, we expose
to applications the MPTCP throughput estimation via the
interface described in §3, which overrides the player’s own
estimation. In this way, the player has a consistent view of
the overall available network resources based on which it
makes the rate-selection decision.

For the deadline extension, we empirically set Φ to be
80% of the overall buffer capacity. We set Ω, the low-buffer
threshold for disabling the MP-DASH scheduler, as follows.
Consider a time window of the next T seconds. Assuming
we stay at the lowest bitrate, we estimate the length (in time)
of chunks that can be downloaded during this window to be
T ′. Then the threshold of disabling the MP-DASH scheduler
is Ω = T − T ′ where T and T ′ are the buffering time to
be consumed and supplied, respectively. A negative Ω is
treated as 0. We set T to be twice of the duration of the entire
buffer. Changing T to 1x or 3x of the buffer duration does
not qualitatively change the results. To be conservative, we
set the minimum value of Ω to be 40% of the buffer capacity.

5.2.2 Buffer-Based DASH Rate Adaptation
We then shift to the buffer-based rate adaptation, which

maps the buffer occupancy to video qualities. The intuition
is that the buffer occupancy implicitly encodes the relation
between the network capacity and the selected video bitrate.

Based on our experiments in §7, we found the original
buffer-based rate adaptation algorithm is very aggressive in
utilizing the bandwidth. Assume the MPTCP throughput is
stable at aroundR=3.4 Mbps, whose nearest video encoding
bitrates are r1=2.4 Mbps and r2=3.9 Mbps. A throughput-
based scheme (e.g., FESTIVE) will only fetch chunks of r1,

 0

 1

 2

 3

 4

 5

 20 40 60 80 100 120 140

V
id

e
o
 B

it
ra

te
 (

M
b

p
s)

Chunk Index

Figure 3: Bitrate oscillation of the original BBA algorithm.

which is the highest bitrate that the network can sustain. On
the other hand, a buffer-based scheme starts with rate r1.
Since r1 < R, the buffer occupancy grows, which switches
the encoding bitrate to r2 > R. Then the buffer level
decreases, eventually switching the encoding bitrate back to
r1. As a result, the selected bitrate keeps oscillating between
r1 and r2, as shown in Figure 3. This behavior of BBA not
only degrades the QoE [37, 42] but also limits the resource-
saving capability of MP-DASH. To address this problem,
we modified the original buffer-based adaptation algorithm
(BBA) by forcing the selected bitrate to be no higher than
the actual MPTCP throughput. We call the modified scheme
BBA-C (Cellular-friendly version of BBA). We evaluate
both BBA and BBA-C in §7.

We discuss how to configure Φ and Ω. To keep the
buffer not full, we conservatively set Φ (the high-buffer
threshold for deadline extension) to be the overall buffer
capacity minus one chunk’s duration. For Ω (the low-
buffer threshold), we cannot use a single buffer occupancy
threshold as used in the throughput-based scheme, because
in a buffer-based scheme, each encoding bitrate has its own
buffer occupancy range. We enable the MP-DASH scheduler
only when the player reaches the highest bitrate that the
network can sustain. At this point, we need to keep the
buffer occupancy higher than the lowest level of the current
encoding bitrate, otherwise the bitrate will drop to the next
lower level. Therefore, we disable the MP-DASH scheduler
whenever the buffer occupancy is getting close to the lowest
level of the current encoding bitrate, el. We empirically set Ω
to be el plus one chunk’s duration. For example, assume the
current video quality maps to a buffer level range from el=20
to eh=40 seconds, and a chunk’s duration is 4 seconds. Then
we enable the MP-DASH scheduler only when the buffer
contains at least 24 seconds’ content.

The high-level principle of choosing the proper values of
Φ and Ω for both the throughput-based and buffer-based
rate adaptations is to be conservative with the purpose of
preventing stalls. However, we empirically found the current
settings of Φ and Ω yield good resource savings while incurs
negligible playback rate degradation in realistic settings
(§7). We plan to evaluate how different values of these
parameters impact other QoE metrics, such as stalls and
video bitrate switches, in our future work.

5.2.3 Hybrid DASH Rate Adaptation
We can leverage the MP-DASH scheduler for a wide

range of DASH algorithms. We consider one example of

134

MPC [42], a recent model predictive control algorithm that
leverages both throughput estimation and buffer occupancy.
At a high level, MPC works as follows. Instead of
solving an optimization problem for each chunk, its online
version looks up a pre-generated table to select the optimal
bitrate based on the buffer level, previous bitrate, and
throughput estimation. To support MP-DASH, MPC can
set a chunk’s deadline as the chunk size divided by the
minimum throughput required by the optimal bitrate known
from the table. Meanwhile, since MPC is a hybrid
approach of using both throughput and buffer occupancy
for rate adaptation, we can reuse several solutions described
in §5.2.1 and §5.2.2. We leave the detailed design and
implementation as future work.

6. IMPLEMENTATION
We have implemented the MP-DASH Scheduler on

Linux platform in the kernel instead of the user space,
which is more suitable for complex application-specific
schedulers [20]. Given the simplicity of MP-DASH
scheduler and since it tightly couples with MPTCP, realizing
it in the kernel significantly reduces its communication
overhead with the basic functions of MPTCP. Based on the
online algorithm, a client uses a reserved bit in the MPTCP
DSS (Data Sequence Signal) option [15] to notify a server
of its decision about whether the cellular subflow should be
enabled. The user-specified interface preference is realized
by setting the primary MPTCP interface accordingly.
Implementing a general policy framework is still an open
problem and we leave it as our future work. To estimate the
throughput of a subflow, we employ the non-seasonal Holt-
Winters (HW) predictor [19], which is known to be more
robust than other approaches such as exponentially weighted
moving average (EWMA) for non-stationary processes. The
HW predictor is essentially a double exponential smoothing
method that takes into account the possible trend in the
measurement data. We implement it in MP-DASH using the
parameters suggested by He et al. [19]. Overall, we add
about 300 lines of Linux kernel code as a portable patch of
MPTCP. We have also applied this patch to the Linux kernel
of Google Nexus 5 with Android 4.4.2.

A key challenge of implementing the MP-DASH
scheduler is that we need to manage the secondary subflow
(i.e., cellular subflow in our case) in an energy efficient
manner. Instead of actually switching on/off the cellular
radio, or adding/removing the cellular subflow (which is
supported by a recent work [20] at the cost of increased
TCP handshake delay), we leverage the existing MPTCP
schedulers that select the available subflow for each packet.
When we “disable” the cellular subflow, we simply skip
it in the scheduling function, thus incurring no overhead
of handshake message exchange. This design works as a
simple overlay with both the default and the round-robin
MPTCP schedulers (and presumably others). As a result,
MP-DASH can handle diverse network conditions (e.g., the
paths have drastically different delay or bandwidth) as the
off-the-shelf MPTCP schedulers do. Note that keeping the
LTE radio interface always on incurs very small additional

energy overhead (only periodical Discontinuous Reception
(DRX) spikes [21]). We discuss the implication of our
design on radio energy consumption in §7.

Our implementation of the MP-DASH Video Adapter is
based on the open-source GPAC video player (v0.5.2) [5].
It has a simple throughput-based rate adaptation algorithm,
referred to as GPAC, which estimates the throughput by
measuring the download time of the last chunk, and
selects the highest encoding bitrate lower than the estimated
throughput. We have further implemented three other DASH
algorithms (FESTIVE [24], BBA [23] and BBA-C) in the
GPAC player. FESTIVE is a representative throughput-
based DASH algorithm providing better robustness, fairness,
and stability. BBA is the original buffer-based adaptation
algorithm, and we have implemented its full version (BBA-
2). BBA-C is our modified version of BBA-2 with less
aggressive bandwidth usage as described in §5.2.2. For
all four DASH algorithms, we have implemented their
MP-DASH adapters with from around 30 to 100 lines
of C code. This confirms the easy integration between
the MP-DASH framework and existing off-the-shelf DASH
algorithms.

We have also built a Multipath Video Analysis Tool,
consisting of about 3,000 lines of C++ code. Its purpose
is to facilitate our evaluation by analyzing key metrics of
video streaming over multipath, such as path utilization,
rebuffering, video quality switch, and energy consumption.
It takes as input a network packet trace containing the video
content, as well as a player’s event logs. It then correlates
them to perform the analysis. A key strength of this tool is it
understands multiple protocol layers including MPTCP, TLS
(if encryption is used), HTTP, and DASH. It also visualizes
the analysis as illustrated in Figure 8.

7. EVALUATION
We evaluate the MP-DASH scheduler and conduct ex-

tensive evaluations of MP-DASH enhanced video streaming
through both controlled experiments and real field studies.

7.1 Methodology
We set up an MPTCP testbed using a client laptop and

a server machine, both with Linux kernel 3.18.20. They all
run the stable version of MPTCP v0.90.0 [31] enhanced with
MP-DASH. The client is equipped with an external LTE
dongle and a built-in WiFi interface. We use a dedicated
802.11n WiFi access point running on the 5 GHz frequency
band, providing <1 ms RTT and >50 Mbps bandwidth
between client and server. We use Dummynet [8] to
configure the WiFi latency to be 50 ms, resembling the
RTT experienced by typical metropolitan WiFi users [36].
Although Dummynet creates additional buffers, as we use
it to control latency explicitly, it will not create severe
bufferbloat problems on our testbed. The cellular path is
provided by a major U.S. carrier’s commercial LTE network
with around 50-60 ms RTT. We set up an Apache2-based
DASH server for the experiments in §7.3.

Our current MP-DASH scheduler aims at reducing
cellular data usage. This also leads to reduced energy

135

 0

 0.5

 1

 1.5

 2

 2.5

 3

 Baseline 8s 9s 10s

 3

 6

 9

 12

 15

B
y
te

s
o
v
e
r

LT
E
 (

M
B

)

E
n
e
rg

y
 C

o
n
su

m
p

ti
o
n
 (

J)Default
Round-Robin

Figure 4: Comparing baseline MPTCP and MP-DASH
with different deadlines using the default and round-robin
schedulers.

consumption. Despite conducting the experiments on
a laptop, we also want to understand the radio energy
consumption, which accounts for at least half of the overall
device energy consumption for a typical mobile device [30],
if MP-DASH is deployed on a smartphone or tablet. The
energy impact of MP-DASH on other components such as
display is negligible, as it has almost no impact on the
video quality. We use a simulation-based approach by
feeding the collected network traces to a custom simulator
with a recently proposed model [30]. This is the most
comprehensive and up-to-date multipath radio energy model
that considers both DRX and energy tails [21]. We compute
the radio energy using two devices’ parameters: Samsung
Galaxy Note and Samsung Galaxy S III, both yielding
similar results. We therefore report the first one. Note the
above energy analysis is feasible because given the same
network condition, MP-DASH incurs deterministic traffic
pattern, which allows us to “replay” the trace under different
power models for different types of devices. In our future
work, we plan to directly measure the energy consumption
of MP-DASH on smartphones.

7.2 Performance of MP-DASH Scheduler
We begin with evaluating the MP-DASH scheduler

individually, using single file download as the workload.
This evaluation (in particular, the trace-driven simulation)
allows us to compare our online scheduling results with the
optimal offline scheduling results.

7.2.1 Experiments over Real WiFi and LTE
We consider again the motivating example in §2.3.

The client downloads from server 5MB data. We use
Dummynet [8] to throttle the bandwidth of WiFi and cellular
links to be 3.8 and 3.0 Mbps, respectively. Under this setup,
it takes ∼10.5 seconds to download the 5MB data using
WiFi alone and∼6 seconds when using MPTCP. As a result,
we experiment with three deadlines of 8, 9 and 10 seconds.

We evaluate the impact of the MP-DASH scheduler on
both the default and round-robin MPTCP schedulers. We
examine three metrics: download time, cellular bytes, and
radio energy consumption. We plot the number of bytes over
LTE using bars and mark the radio energy consumption as
round dots in Figure 4 (averaged over 10 runs). MP-DASH
significantly reduces the cellular data and radio energy
usage, compared to unmodified MPTCP. The longer the

Trace File Avg WiFi Avg Cell
Name Size Bandwidth Bandwidth

Synthetic (σ=10%) 5 MB 3.8 Mbps 3.0 Mbps
Synthetic (σ=30%) 5 MB 3.8 Mbps 3.0 Mbps

Fast Food B 20 MB 5.2 Mbps 8.1 Mbps
Coffeehouse D 5 MB 1.4 Mbps 7.6 Mbps

Office 50 MB 28.4 Mbps 19.1 Mbps

Table 1: WiFi/cellular bandwidth and file sizes for
simulation.

Trace D/L Cell % Cell % Diff. Miss?
Name sec. Optimal Online

SYNTH 8 24.77% 27.13% 2.36% No

σ=10% 9 15.29% 19.17% 3.88% No
10 6.16% 11.74% 5.58% No

SYNTH 8 26.32% 30.79% 4.47% No

σ=30% 9 16.88% 24.32% 7.44% No
10 8.48% 16.66% 8.18% No
15 60.49% 61.82% 1.33% No

FastFood 20 48.52% 52.79% 4.27% No
25 38.09% 42.99% 4.90% No
30 26.91% 33.13% 6.22% No
5 83.26% 81.22% -2.04% 10ms

Coffee 10 65.03% 67.18% 2.15% No
15 47.86% 55.48% 7.62% No
20 30.48% 35.52% 5.04% No
9 27.21% 27.48% 0.57% No

Office 12 12.98% 15.46% 2.48% No
15 0.00% 3.82% 3.82% No
18 0.00% 0.00% 0.00% No

Table 2: Comparing MP-DASH’s online algorithm with the
optimal using trace-driven simulation. “SYNTH” stands for
Synthetic and “D/L” stands for Deadline.

deadline is, the more the saving is. When the deadline is
10 seconds, the saving is 68% for cellular data and 44% for
radio energy.

All data transfers finish before the deadline and the
average finish time is close to the deadline. However, under
the scenarios with high bandwidth prediction errors, the
deadline might be missed (after that both interfaces will
always be used) and we show in §7.2.2 this is unlikely
in practice. Missing a deadline can further be prevented
by tuning the α parameter in Algorithm 1. In the above
experiments, we set α to be 1. We also experiment with
different α values when the deadline is 10 seconds. Even
when α is 0.8, the MP-DASH scheduler achieves savings for
cellular data and radio energy of 28% and 15%, respectively.

7.2.2 Trace-Driven Simulation
We also conduct a trace-driven simulation of the

MP-DASH scheduler to understand its performance under
realistic network conditions with throughput prediction
errors, compared with the optimal case where the throughput
is perfectly known.

The simulation methodology is as follows. First, we
create different bandwidth profiles listed in Table 1. We

136

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (second)

FastFood
FastFood-HW

Coffee
Coffee-HW

Figure 5: Two bandwidth traces and their prediction results.

Video quality level 1 2 3 4 5
Big Buck Bunny 0.58 1.01 1.47 2.41 3.94
Red Bull Playstreets 0.50 0.89 1.50 2.47 3.99
Tears of Steel 0.50 0.81 1.51 2.42 4.01
Tears of Steel HD 1.51 2.42 4.01 6.03 10.0

Table 3: Average encoding bitrates (in Mbps) for four DASH
videos.

generate two synthetic profiles with the average WiFi
and cellular bandwidth of 3.8 Mbps and 3.0 Mbps, and
the standard deviation of instantaneous throughput being
σ=10% and 30% of the average. We also collect real traces
from three public locations. Next, we build a simulator
that performs discrete-time simulation of Algorithm 1 (with
α set to 1) and the Holt-Winter algorithm with the length
of each time slot being the round-trip time (we use 50
ms for the synthetic traces). We then run the simulator
on all bandwidth profiles with different combinations of
deadline and file size, and summarize the results in Table 2.
The file size is determined by the average aggregated
bandwidth and download deadline. The key metrics are
whether the deadline is missed, and the fraction of cellular
bytes. The “Cell % (Optimal)”, “Cell % (Online)”, and
“Diff.” columns correspond to the solution with the perfect
knowledge of bandwidth, our online algorithm, and their
difference, respectively. The optimal solution always incurs
the minimum cellular usage without missing the deadline.

We discuss our findings. First, the online MP-DASH
scheduler tends to be conservative even with α set to 1.
For the vast majority of cases, the inaccuracy in bandwidth
estimation results in using more cellular data instead of
missing the deadline. This is likely attributed to the nature
of the bandwidth patterns. Deadlines are missed only
when the WiFi throughput drops steeply and continuously;
while in reality, WiFi bandwidth tends to be fluctuating,
as exemplified in Figure 5. The second observation is the
good performance of the online algorithm, whose additional
cellular usage is consistently small (less than 10% of the
total transfer size, as shown in the “Diff.” column).

7.3 Evaluation of the MP-DASH Frame-
work

We now evaluate the overall MP-DASH framework using
four videos from a public dataset [26] listed in Table 3. In the
rest of this section, unless otherwise mentioned, we show the

Default 700 K 1000 K MP-DASH
Cell Bytes 96.16 33.41 45.74 18.51

% of Cell Data 43.62 15.94 20.70 8.373
Radio Energy 641.6 855.0 834.6 281.9

Table 4: Cellular throughput-throttling vs MP-DASH.
Cellular Bytes are in MB and Radio Energy is in Joule.

results of only Big Buck Bunny due to space limit (the other
two non-HD videos yield qualitatively similar results). We
study the HD version of Tears of Steel in §7.3.5.

All presented results use chunk duration of 4 seconds.
We also experiment with 6 and 10-second video chunks,
and obtain similar results. The length of each video is
10 minutes. Thus, for 4-second chunk duration, a full
playback consists of 150 chunks each being selected from
5 quality levels. In all experiments, we report various
statistics for the last 80% chunks, when the player is in its
steady state. The statistics for all chunks show very similar
results. We consider four evaluation metrics: number of
stalls, playback bitrate, cellular data usage, and radio energy
consumption (computed using the way described in §7.2). In
our evaluations, no stall occurs. Therefore we focus on the
last three metrics. We set α in Algorithm 1 to be 1. As we
have shown in §7.2, using a smaller value of α will lead to
less savings of cellular data and radio energy.

7.3.1 Inefficiency of Throughput Throttling
We first examine the alternative solution mentioned in §4:

simply throttling the cellular path. We quantitatively
compare three approaches using the default GPAC rate
adaptation algorithm: the unmodified MPTCP, MPTCP with
cellular being throttled, and MPTCP with MP-DASH (rate-
based deadline setting). We use the same network setting
as that in §7.2 where the WiFi and cellular throughputs are
3.8 and 3.0 Mbps, respectively. We throttle the cellular
throughput at 200, 700 and 1000 Kbps. For the first
two settings, as the actual MPTCP throughput is usually
smaller than the available bandwidth due to, for example,
TCP congestion control, a large number of the downloaded
chunks (> 22%) are not encoded at the highest bitrate level.
In the real-world settings, the throttling approach is further
complicated by the fluctuating WiFi throughput, making it
difficult to adjust the cellular throttling cap accordingly in
real time.

Table 4 summarizes the bytes and percentage of cellular
data, as well as the radio energy consumption under four
configurations: the default MPTCP, MPTCP with 700 Kbps
cellular throttling, 1000 Kbps throttling, and MPTCP with
MP-DASH. Although throttling the cellular path reduces
the cellular traffic, it pays a significant penalty for high
radio energy consumption. In contrast, MP-DASH achieves
both the lowest cellular usage and radio energy. Figure 6
visualizes the traffic patterns of three configurations in
Table 4: throttling at 700 Kbps (top), MP-DASH (middle),
and the default MPTCP (bottom). In the throttling scheme,
LTE is slowly “dribbling” data, leading to considerable radio
energy waste [33]. The default MPTCP incurs a traffic

137

 4

 8 MPTCP WiFi LTE

 4

 8

 0

 4

 8

 0 10 20 30 40 50 60

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (second)

Figure 6: Traffic patterns of MPTCP with 700 Kbps cellular
throttling (top), MP-DASH (middle), and default MPTCP
(bottom).

pattern similar to that in Figure 1 with heavy cellular usage.
For MP-DASH, cellular is not used during most of the time,
and is only consumed adaptively when the deadline cannot
be met using WiFi alone.

7.3.2 Controlled Experiments
We now evaluate MP-DASH enhanced players using con-

trolled experiments under different bandwidth combinations
of WiFi and LTE. We consider three network conditions: (1)
WiFi 3.8 Mbps, LTE 3.0 Mbps, (2) WiFi 2.8 Mbps, LTE 3.0
Mbps, and (3) WiFi 2.2 Mbps, LTE 1.2 Mbps. For (1) and
(2), the MPTCP throughput is higher than the highest video
encoding rate (3.94 Mbps); while for (3) the overall network
capacity cannot support the highest video quality. Note that
using higher LTE throughput will lead to more savings of
cellular data brought by MP-DASH.

We investigate four DASH algorithms: FESTIVE, GPAC,
BBA, and BBA-C with and without MP-DASH. We observe
no stalls in all experiments, and MP-DASH has no impact
on the average playback rate. Thus, we focus on the metrics
of cellular data usage and radio energy consumption. Next,
we describe the results for each DASH algorithm.

FESTIVE AND GPAC. Figure 7a plots the results of
FESTIVE. In each group of network conditions, “Baseline”,
“Duration”, and “Rate” correspond to MPTCP without
MP-DASH, MP-DASH with duration-based deadline set-
ting, and MP-DASH with rate-based deadline scheme,
respectively. The cellular data usage is shown in bars
and the energy consumption is marked as round dots. We
observe that compared to the default MPTCP, MP-DASH
significantly reduces both cellular data and radio energy.
When WiFi bandwidth drops from 3.8 to 3.0 Mbps, the
savings become less because more cellular data will be
required by the player. The savings increase for the worst
network condition (W2.2/L1.2) because the chunk quality
drops from Level 5 to 4 (Table 3) and the WiFi throughput
is close to the average bitrate of Level 4 (2.41 Mbps). For
GPAC, which is also a throughput-based DASH algorithm,
we observe qualitatively similar results.

Figure 7a shows the rate-based deadline setting out-
performs the duration-based one. Recall in §5.1 that in
these two settings, the cellular usage is budgeted based on
the average video bitrate and a particular chunk’s bitrate,

Figure 8: Visualization results produced by our multipath
video analysis tool (§6). The X axis is the time. Each
bar is a chunk. Its height and width represent its size and
download duration, respectively. The color of a chunk is
its bitrate level (1 to 5) with light blue being the highest
level. The black component of each chunk represents
the fraction that is delivered through cellular. The top,
middle, and bottom subfigures correspond to the default
MPTCP, MP-DASH with rate-based deadline selection,
and MP-DASH with duration-based deadline selection,
respectively, using FESTIVE.

respectively. Therefore, for chunks with higher-than-
average encoding bitrate, the duration-based setting requires
more cellular data than the rate-based one. This is visualized
in Figure 8 by our analysis tool (§6). The figure also
illustrates that MP-DASH eliminates most of the idle gaps
appearing in the default MPTCP case (the top subfigure).

BBA. Figure 7b shows the results for BBA. For the
first two groups of network conditions, MP-DASH brings
less savings than it does for FESTIVE, because BBA
itself is known to be more aggressive, leaving less saving
opportunities for MP-DASH. Note MP-DASH is adaptive in
that it saves resources on the premise that the application’s
bandwidth requirement is satisfied. The interesting case is
the W2.2/L1.2 scenario, where MP-DASH brings no cellular
data saving. The reason, as explained in §5.2.2, is that
the original BBA algorithm is even more aggressive when
the overall network capacity cannot support the highest
encoding bitrate. In this case, the fetched chunk bitrate
may oscillate as illustrated in Figure 3, worsening users’
watching experience.

BBA-C. We plot the results for BBA-C in Figure 7c.
BBA-C is the cellular-friendly version of BBA that forces
the selected bitrate to be no higher than the actual network
capacity, to prevent the bitrate oscillation. For the first two
groups of network conditions, BBA and BBA-C have the
same results, because the overall bandwidth is capable of
supporting the highest bitrate and thus the bitrate capping
feature of BBA-C is not invoked. The difference is the
W2.2/L1.2 scenario where BBA-C effectively prevents the
bitrate oscillation by locking the highest bitrate to Level
4. This provides room for MP-DASH to save cellular data.
By comparing Figure 7b and 7c, we observe that BBA-C
with MP-DASH reduces cellular data usage and radio energy
consumption by 69% and 50%, respectively, at the cost
of reducing the playback bitrate from oscillating between

138

 0

 20

 40

 60

 80

 100

 120

 W3.8/L3.0 W2.8/L3.0 W2.2/L1.2

 200

 400

 600

 800

 1000

 1200

B
y
te

s
o
v
e
r

LT
E
 (

M
B

)

E
n
e
rg

y
 C

o
n
su

m
p

ti
o
n
 (

J)

WiFi (W) and LTE (L) Throughputs

Baseline
Duration

Rate

(a) FESTIVE

 0

 20

 40

 60

 80

 100

 120

 W3.8/L3.0 W2.8/L3.0 W2.2/L1.2

 200

 400

 600

 800

 1000

 1200

B
y
te

s
o
v
e
r

LT
E
 (

M
B

)

E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n
 (

J)

WiFi (W) and LTE (L) Throughputs

Baseline
Duration

Rate

(b) BBA

 0

 20

 40

 60

 80

 100

 120

 W3.8/L3.0 W2.8/L3.0 W2.2/L1.2

 200

 400

 600

 800

 1000

 1200

B
y
te

s
o
v
e
r

LT
E
 (

M
B

)

E
n
e
rg

y
 C

o
n
su

m
p

ti
o
n
 (

J)

WiFi (W) and LTE (L) Throughputs

Baseline
Duration

Rate

(c) BBA-C

Figure 7: Resource savings of MP-DASH under three network conditions for FESTIVE, BBA, and BBA-C (Baseline is the
vanilla MPTCP). Throughput is in Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Savings of Cellular Data

FESTIVE-Rate
FESTIVE-Dur

BBA-Rate
BBA-Dur

Figure 9: Cellular data savings brought by MP-DASH in all
locations.

Levels 4 and 5 to constantly being at Level 4 (29% reduction
of average playback bitrate). We therefore believe BBA-
C strikes a good tradeoff among resource usage, playback
bitrate, and playback smoothness for mobile video.

7.3.3 MP-DASH in Real-World Settings
We now investigate how MP-DASH helps make DASH

video over MPTCP user-preference-aware under realistic
settings through extensive in-field experiments. We conduct
the experiments multiple times at 33 locations in three U.S.
states, at different times of a day and during both weekdays
and weekends. The locations include airport, hotel, fast
food restaurant, shopping mall, retailer store, food market,
coffeehouse, electronics store, parking lot, office building,
grocery store, public library, etc. (described in §2). We
use the free public WiFi networks, and the LTE provided
by a large commercial carrier in the U.S. During the course
of 3 months, we have collected more than 150 GB of
data. We focus on two DASH algorithms: FESTIVE
and BBA, and experiment with each algorithm under three
configurations: vanilla MPTCP and MP-DASH with rate-
based and duration-based deadline settings. A group of
experiments thus consists of playing the Big Buck Bunny
video under these six schemes in a random order. BBA-
C performs the same as BBA for the experiments in this
section, as the MPTCP capacity is higher than the highest
video bitrate. We evaluate the performance of BBA-C for
HD videos in §7.3.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1 -0.05 0 0.05 0.1
C

D
F

Playback Bitrate Reduction

FESTIVE-Rate
FESTIVE-Dur

BBA-Rate
BBA-Dur

Figure 10: Playback bitrate reduction of experiments in all
locations.

Figure 9 plots the distribution of cellular data savings
brought by MP-DASH at the above locations for four
streaming schemes. Across all experiments, the 25th, 50th,
and 75th percentile of the savings are 48%, 59%, and 82%,
respectively. In general, MP-DASH achieves more savings
for FESTIVE than it does for BBA. We observe similar
results for radio energy consumption savings (figure not
shown): the 25th, 50th, and 75th percentiles are 7.7%,
17%, and 53%, respectively. There is no playback bitrate
reduction for 82.65% of the experiments, as shown in
Figure 10. For the rest experiments, the average reduction is
only 2.5%. Note a negative reduction means the increase of
bitrate. The results demonstrate MP-DASH can effectively
reduce the cellular data usage and radio energy for DASH
video streaming over multipath, compared with using the
vanilla MPTCP.

To gain more insights of the results, for each of the three
categories described in §2.2, we pick several representative
results and list them in Table 5 where groups (in the order
of scenarios 1, 2, and 3 defined at the beginning of §2.2)
are separated by horizontal lines. The numbers in the last 8
columns of the table are the savings in % of cellular bytes or
radio energy compared to using the vanilla MPTCP without
MP-DASH. The overall observation is, MP-DASH provides
more savings as the WiFi throughput increases. For scenario
2 (WiFi can sometimes play the best quality), although
the average WiFi throughput (based on our measurements
before playing a video) is higher than the encoding bitrate of

139

WiFi LTE FESTIVE/Bytes FESTIVE/Energy BBA/Bytes BBA/Energy
Location BW RTT BW RTT Rate DUR Rate DUR Rate DUR Rate DUR
Hotel Hi 2.92 14.1 11.0 51.9 52.92 49.43 9.735 29.74 41.74 40.74 23.52 35.74
Hotel Ha 2.96 40.8 14.0 68.6 59.25 57.68 11.68 19.53 49.54 47.84 15.50 13.13

Food Market 3.58 75.4 22.9 53.4 59.95 66.70 7.083 21.56 74.93 55.71 12.32 12.64
Airport 5.97 32.2 12.1 67.3 84.00 65.53 42.53 25.11 37.75 74.00 11.85 27.49

Coffeehouse 6.04 28.9 18.1 69.0 80.05 91.65 44.42 48.73 79.80 78.92 41.49 40.53
Library 17.8 23.3 5.18 64.1 97.44 97.81 77.78 85.19 95.12 97.54 80.29 79.72

Elec. Store 28.4 10.8 18.5 59.4 91.24 99.56 65.43 82.48 86.15 93.58 58.91 68.43

Table 5: Savings of cellular data and radio energy consumption at locations with different network conditions (BW in Mbps,
RTT in ms, and savings in %). “DUR” stands for Duration.

 4

 8 MPTCP WiFi LTE

 4

 8

 0

 4

 8

 0 10 20 30 40 50 60

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (second)

Figure 11: Traffic patterns of mobility experiments with
MP-DASH (top), default MPTCP (middle), and single path
WiFi (bottom).

the highest quality, using only WiFi cannot always support
the highest bitrate, as the throughput of open WiFi networks
is not always stable during the 10-minute playback period
(figure not shown). Therefore, to ensure smooth playback
at the highest quality, MPTCP still needs to use cellular
from time to time. For scenario 3 (WiFi can almost always
stably support the highest bitrate), one may argue that it
is not necessary at all to use MPTCP. This is indeed true.
However, it is inconvenient to ask users or video players
to switch between single-path and multipath. Instead,
MP-DASH provides a general OS support for applications
to transparently and adaptively switch between them.

7.3.4 MP-DASH under Mobility Scenario
To evaluate the performance of MP-DASH under the

mobility scenario, we walk around a WiFi AP following
the same pre-defined route with the laptop playing the
video using the FESTIVE rate adaptation algorithm. The
WiFi and cellular bandwidth are both around 5.0 Mbps.
Figure 11 plots samples of 60-second throughput for three
configurations: MPTCP enhanced by MP-DASH with rate-
based deadline setting (top), the default MPTCP (middle),
and using only WiFi (bottom). It shows that MP-DASH can
adaptively use cellular only when the WiFi throughput drops
as the laptop moves far from the AP, whereas the default
MPTCP drives the cellular link to almost its full capacity,
regardless of the WiFi throughput. As a result, MP-DASH
saves cellular data usage and radio energy consumption
by 81.43% and 47.30%, respectively, without reducing the

FESTIVE BBA-C
Playback Bitrate ↑ by 20.92% ↓ by 3.006%
Cellular Data Saving 39.88% 37.47%
Radio Energy Saving 8.624% 10.40%

Table 6: HD video results with the rate-based deadline
setting.

video bitrate (all chunks are played at the highest bitrate).
Using only WiFi, on the other hand, cannot sustain the
highest video bitrate for more than half of the chunks.

7.3.5 High Definition (HD) Video
In all experiments above, the highest video quality is∼4.0

Mbps. We repeat the experiments by using the HD version of
the Tears of Steel video whose highest bitrate is 10.0 Mbps as
listed in Table 3. Note that the emerging 4K videos and 360-
degree videos may require an even higher bandwidth [32].
This experiment complements the experiments in §7.3.3
because when playing the HD video, even the aggregated
bandwidth of WiFi and LTE cannot sustain the highest
bitrate at several locations. In this case, the video is mostly
played at bitrate levels 3 & 4, thus allowing us to assess the
performance of BBA-C in the wild. Table 6 summarizes the
results at one of such locations (a supermarket). MP-DASH
still achieves significant savings of cellular bytes (40% for
FESTIVE and 37% for BBA-C over the unmodified BBA)
and radio energy, compared to the vanilla MPTCP. Counter-
intuitively, for FESTIVE, using MP-DASH actually leads to
increased playback bitrate. This is likely attributed to the
fact that the throughput estimation at the transport layer is
more accurate than at the application layer.

8. DISCUSSION
General Applicability of the MP-DASH Scheduler. It is

important to note the deadline-aware data transfer provided
by MP-DASH is generally applicable to diverse application
scenarios besides video streaming. They bear a common
characteristic of being delay tolerant: as long as data
transfers can finish before their deadline, the user experience
will not be impacted. Consider the following examples.
• For music apps using automated recommendation (e.g.,
Pandora Music), players do not need the next song until the
playback of the current song is close to its end.
• For turn-by-turn navigation, a map tile only needs to be
fetched before the vehicle is close to the tile’s location.

140

• Mobile data offloading can be enhanced by leveraging
many applications’ delay-tolerant nature [7, 17, 27].

In the above scenarios, we can use MPTCP to boost the
system performance, and use the MP-DASH scheduler to
reduce the cellular data usage without sacrificing QoE. Note
that even for applications such as turn-by-turn navigation
which do not generate a significant amount of data,
MP-DASH can help offload cellular traffic to WiFi networks
when possible while bringing the benefits of multipath.

Deployment of MP-DASH requires upgrading MPTCP.
This can be realized by system updates routinely launched
by mobile carriers or device vendors. To use MP-DASH, the
video rate control algorithms also need to be upgraded. As
described in §6, the modifications to video players are very
light. Since almost all of MP-DASH’s logic resides on the
client side, the change required on the server side is minimal:
only its MPTCP stack needs to support MP-DASH. No
change to the video server application is required. Also,
by using standard TCP splitting proxies with MP-DASH
enabled MPTCP, we can make MP-DASH fully transparent
to video servers. The proxy is TLS/SSL friendly as it runs
at the transport layer and therefore does not need to perform
any decryption.

Runtime Overhead. MP-DASH incurs negligible
runtime overhead, as both the MP-DASH’s scheduling
algorithm itself and the Holt-Winters throughput prediction
has low complexity. We have measured the CPU utilization
with and without MP-DASH and have not noticed any
measurable increase of CPU usage.

Limitations. We conduct all experiments on a laptop
instead of a smartphone. We expect though the impact
of device selection to be small given the low runtime
overhead of MP-DASH. Other limitations include using a
lab server instead of a production server (e.g., YouTube) for
experiments, having not performed tests on other cellular
technologies such as 3G/HSPA, and having not evaluated
other DASH algorithms such as MPC [42]. We plan to
address them in our future work.

9. RELATED WORK
Mobile MPTCP. MPTCP has been recently investigated

for mobile devices with multiple network interfaces. Chen et
al. [10] and Deng et al. [13] characterized the performance
of MPTCP on WiFi and cellular networks, both focusing
on file download. The mobile kibbutz [29] consolidates
cellular traffic from multiple users through MPTCP, leading
to reduced latency and improved energy efficiency. Croitoru
et al. [12] leveraged MPTCP to achieve seamless mobility
among multiple WiFi APs. eMPTCP [28] combines
delayed subflow establishment and power-aware subflow
management to make MPTCP energy efficient. In our
previous work, we measured the performance of mobile web
over MPTCP for both HTTP and SPDY [18]. Differently
from the above works, we propose a novel multipath
framework for video streaming.

Recently, Corbillon et al. [11] proposed a cross-layer
MPTCP scheduler to prioritize video packets for non-
adaptive video streaming and evaluated its performance

through a simulation study. ADMIT [40] is an analytical
framework that leverages forward error correction to
improve the QoE for non-adaptive video over MPTCP.
Instead of improving the quality of video streaming, our goal
is to reduce cellular data usage, while not impacting user
perceived QoE. Moreover, we investigate the interaction of
adaptive video streaming and MPTCP though MP-DASH
and extensive experiments in the wild.

Adaptive Video Streaming. There is a plethora of work
on understanding and improving the QoE for adaptive video
streaming. Besides FESTIVE [24] and BBA [23], Tian and
Liu [37] proposed rate control algorithms that explore the
smoothness and responsiveness trade-off in DASH and use
video buffer level at the client side as a feedback signal.
Huang et al. [22] measured the performance of three popular
adaptive video streaming services (Hulu, Netflix, and Vudu)
for motivating BBA [23]. Yin et al. [42] developed a control-
theoretic approach to understand the fundamental trade-
offs between various strategies for DASH rate adaptation
algorithms. AVIS [9] is a resource management framework
that separates adaptive video streams from regular ones
through cellular resource virtualization. PBA [43] improves
video QoE by leveraging bandwidth predictions and it
can be further enhanced through a combination with
rate stabilization functions. piStream [41] improves the
QoE of adaptive video streaming by taking advantage
of the PHY information of LTE networks for accurate
bandwidth estimation. Compared to them, we tweak the
MPTCP schedulers to save cellular data usage and energy
consumption for video streaming on mobile devices.

10. CONCLUSION
We conducted, to the best of our knowledge, a first study

of preference-aware multipath for adaptive video streaming.
We proposed the MP-DASH framework and instantiated
it in the context of optimizing video delivery over WiFi
and cellular networks. We also designed MP-DASH
adapters for two representative categories of DASH
algorithms (throughput-based and buffer-based) by making
them multipath-friendly, and we seamlessly integrated the
MP-DASH adapters into them. We demonstrated through
extensive field studies at 33 public places in three far-
apart U.S. states that MP-DASH enhanced video players
are robust and adaptive. Compared with players using the
off-the-shelf MPTCP, they dramatically reduce the cellular
data usage and radio energy consumption without sacrificing
users’ QoE. We plan to open source our MP-DASH
implementation in the near future.

Acknowledgements
We thank Rittwik Jana, Emir Halepovic, and the anonymous
reviewers for their valuable comments and suggestions,
and in particular Adrian Perrig for shepherding the paper.
We thank Yeon-sup Lim, Xiufeng Xie, Xinyu Zhang, and
Darijo Raca for their help to implement MP-DASH. Feng
Qian’s research was supported in part by National Science
Foundation Grant CNS-1566331.

141

11. REFERENCES

[1] About Hotel WiFi Test.
https://www.hotelwifitest.com/about/.

[2] Adobe HTTP Dynamic Streaming. http://www.adobe.
com/products/hds-dynamic-streaming.html.

[3] Apple HTTP Live Streaming.
https://developer.apple.com/streaming/.

[4] Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2015–2020 White Paper.
http://goo.gl/ylTuVx.

[5] GPAC DASH Video Player.
https://gpac.wp.mines-telecom.fr/.

[6] Microsoft Smooth Streaming. http:
//www.iis.net/downloads/microsoft/smooth-streaming.

[7] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting Mobile 3G Using
WiFi. In MobiSys, 2010.

[8] M. Carbone and L. Rizzo. Dummynet Revisited. ACM
SIGCOMM Computer Communication Review,
40(2):12–20, Apr. 2010.

[9] J. Chen, R. Mahindra, M. A. Khojastepour,
S. Rangarajan, and M. Chiang. A Scheduling
Framework for Adaptive Video Delivery over Cellular
Networks. In MobiCom, 2013.

[10] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. M. Nahum,
R. Khalili, and D. Towsley. A Measurement-based
Study of MultiPath TCP Performance over Wireless
Networks. In IMC, 2013.

[11] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier,
and G. Simon. Cross-Layer Scheduler for Video
Streaming over MPTCP. In MMSys, 2016.

[12] A. Croitoru, D. Niculescu, and C. Raiciu. Towards
WiFi Mobility without Fast Handover. In NSDI, 2015.

[13] S. Deng, R. Netravali, A. Sivaraman, and
H. Balakrishnan. WiFi, LTE, or Both? Measuring
Multi-homed Wireless Internet Performance. In IMC,
2014.

[14] A. Dua, C. W. Chan, N. Bambos, and
J. Apostolopoulos. Channel, Deadline, and Distortion
(CD2) Aware Scheduling for Video Streams Over
Wireless. IEEE Transactions on Wireless
Communications, 9(3):1001–1011, Mar. 2010.

[15] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824, 2013.

[16] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[17] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe,
J. Shao, and A. Srinivasan. Mobile Data Offloading
through Opportunistic Communications and Social
Participation. IEEE Transactions on Mobile
Computing, 11(5):821–834, May 2012.

[18] B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of

Mobile Web Performance over Multipath TCP. In
CoNEXT, 2015.

[19] Q. He, C. Dovrolis, and M. Ammar. On the
Predictability of Large Transfer TCP Throughput. In
SIGCOMM, 2005.

[20] B. Hesmans, G. Detal, S. Barré, R. Bauduin, and
O. Bonaventure. SMAPP: Towards Smart Multipath
TCP-enabled APPlications. In CoNEXT, 2015.

[21] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A Close Examination of Performance
and Power Characteristics of 4G LTE Networks. In
MobiSys, 2012.

[22] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown,
and R. Johari. Confused, Timid, and Unstable: Picking
a Video Streaming Rate is Hard. In IMC, 2012.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A Buffer-Based Approach to Rate
Adaptation: Evidence from a Large Video Streaming
Service. In SIGCOMM, 2014.

[24] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive
Video Streaming with FESTIVE. In CoNEXT, 2012.

[25] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and
D. Katabi. FatVAP: Aggregating AP Backhaul
Capacity to Maximize Throughput. In NSDI, 2008.

[26] S. Lederer, C. Müller, and C. Timmerer. Dynamic
Adaptive Streaming over HTTP Dataset. In MMSys,
2012.

[27] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile
Data Offloading: How Much Can WiFi Deliver? In
CoNEXT, 2010.

[28] Y.-S. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley,
R. J. Gibbens, and E. Cecchet. Design,
Implementation and Evaluation of Energy-Aware
Multi-Path TCP. In CoNEXT, 2015.

[29] C. Nicutar, D. Niculescu, and C. Raiciu. Using
Cooperation for Low Power Low Latency Cellular
Connectivity. In CoNEXT, 2014.

[30] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu,
X. Zhou, B. Y. Zhao, and H. Zheng. Energy and
Performance of Smartphone Radio Bundling in
Outdoor Environments. In WWW, 2015.

[31] C. Paasch, S. Barré, et al. Multipath TCP in the Linux
Kernel. http://www.multipath-tcp.org.

[32] F. Qian, B. Han, L. Ji, and V. Gopalakrishnan.
Optimizing 360 Video Delivery Over Cellular
Networks. In All Things Cellular, 2016.

[33] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Profiling Resource Usage for Mobile
Applications: a Cross-layer Approach. In MobiSys,
2011.

[34] P. S. Schmidt, T. Enghardt, R. Khalili, and
A. Feldmann. Socket Intents: Leveraging Application
Awareness for Multi-Access Connectivity. In
CoNEXT, 2013.

[35] I. Sodagar. The MPEG-DASH Standard for

142

https://www.hotelwifitest.com/about/
http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/streaming/
http://goo.gl/ylTuVx
https://gpac.wp.mines-telecom.fr/
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.multipath-tcp.org

Multimedia Streaming Over the Internet. IEEE
MultiMedia, 18(4):62–67, Apr. 2011.

[36] J. Sommers and P. Barford. Cell vs. WiFi: On the
Performance of Metro Area Mobile Connections. In
IMC, 2012.

[37] G. Tian and Y. Liu. Towards Agile and Smooth Video
Adaptation in Dynamic HTTP Streaming. In CoNEXT,
2012.

[38] B. Vamanan, J. Hasan, and T. N. Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). In
SIGCOMM, 2012.

[39] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley. Design, Implementation and Evaluation
of Congestion Control for Multipath TCP. In NSDI,
2011.

[40] J. Wu, C. Yuen, B. Cheng, M. Wang, and J.-L. Chen.

Streaming High-Quality Mobile Video with Multipath
TCP in Heterogeneous Wireless Networks. IEEE
Transactions on Mobile Computing, 15(9):2345–2361,
Sept. 2016.

[41] X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream:
Physical Layer Informed Adaptive Video Streaming
Over LTE. In MobiCom, 2015.

[42] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
Control-Theoretic Approach for Dynamic Adaptive
Video Streaming over HTTP. In SIGCOMM, 2015.

[43] X. K. Zou, J. Erman, V. Gopalakrishnan,
E. Halepovic, R. Jana, X. Jin, J. Rexford, and R. K.
Sinha. Can Accurate Predictions Improve Video
Streaming in Cellular Networks? In HotMobile, 2015.

143

	Introduction
	Motivations
	Multipath TCP (MPTCP)
	Measurement Study in the Wild
	Controlled Experiments

	The MP-DASH Framework
	MP-DASH System Design
	Specific Design Decisions

	Deadline-Aware MP-DASH Scheduler
	MP-DASH Video Adapter
	The Basic Approach
	Handling Different Categories of DASH Rate Adaptation Algorithms
	Throughput-based DASH Rate Adaptation
	Buffer-Based DASH Rate Adaptation
	Hybrid DASH Rate Adaptation

	Implementation
	Evaluation
	Methodology
	Performance of MP-DASH Scheduler
	Experiments over Real WiFi and LTE
	Trace-Driven Simulation

	Evaluation of the MP-DASH Framework
	Inefficiency of Throughput Throttling
	Controlled Experiments
	MP-DASH in Real-World Settings
	MP-DASH under Mobility Scenario
	High Definition (HD) Video

	Discussion
	Related Work
	Conclusion
	References

