Scheduling software updates for connected cars with limited availability

Carlos E. Andrade
Simon D. Byers
Vijay Gopalakrishnan
Emir Halepovic
Milap Majmundar
David J. Poole
Lien K. Tran
Christopher T. Volinsky

AT&T Labs Research
Bedminster and Middletown, NJ, USA
AT&T Labs
Austin, TX, USA
Agenda

1. Introduction

2. Current/Common connected car constraints

3. Model

4. Solving the problem

5. Results
All presented information does neither reflect nor imply an actual business case for AT&T and/or associated companies. They are generalized data used to assess performance of the algorithms only.
Agenda

1. Introduction

2. Current/Common connected car constraints

3. Model

4. Solving the problem

5. Results
Today - cars, trucks, tractors rely heavily on software[1]:

- Estimated 100 million lines of code residing in various systems
- Updates are tens of Megabyte to Gigabytes in size

Forecast - 90\% of cars will be connected by the year 2020[2]:

- Millions of connected cars are already on the roads today

Software usually requires updates[3]:

- In 2015, more than 5 million software-only recalls in USA
- At the dealerships, per-service cost is roughly $100

[1] J. Zurschmeide, 2016. Your next car will update itself while you sleep, and maybe watch you too. \url{https://goo.gl/iWtvv8}

Tesla (connected) cars during Hurricane Irma

The New York Times

Tesla Boosts Car Battery Power During Irma, Raising Questions of Control

TheStreet

Tesla Dropping a Software Upgrade to Help Hurricane Irma Evacuees Pays Off

Tesla performed an automatic update on Model S/X60/60D vehicles that unlocked the full capacity of the 75kWh battery

CNN tech

Tesla triggers upgrade for cars in Irma's path
Connected cars ≠ Smartphones

- **Availability**: connected cars appear rarely on the network, compared to smartphones (average of 1 hour)
- **Update priority**: critical could mean life-critical!
- **Hardware**: very limited capabilities
- **Lifetime**: average lifetime of modern cars is over 11 years[1]

[1] D. DeMuro, 2015. *Buying a Car: How long can you expect a car to last?*
http://www.autotrader.com/car-shopping/buying-a-car-how-long-can-you-expect-a-car-to-last-240725
Alternatives to visiting the dealership

USB sticks or using smartphones as intermediaries:
- Require human intervention to ensure the update is completed

WiFi:
- Cars must have a client WiFi module
- A human must set up and maintain WiFi connectivity to the car

Satellite:
- Requires additional hardware and may not offer adequate control
So, let’s do it over the cellular network

Firmware over-the-air (FOTA)

Widespread availability of the network

Estimated $35 billion in annual savings by 2022 using FOTA\(^1\)

But there are some issues:

▶ Network impact during FOTA updates
▶ Hard constraints in the cars

\(^1\) Automotive News, 2016. *Over-the-air updates on varied paths.*
http://www.autonews.com/article/20160125/OEM06/301259980/over-the-air-updates-on-varied-paths
Simulated Physical Resource Block (PRB) impact with different Maximum Bit Rate (MBR) limits
Simulated Physical Resource Block (PRB) impact with different Maximum Bit Rate (MBR) limits

Even with throttling, the impact can be significant!
Car count and PRB utilization over one week for a busy radio (15-minute bins)

Car behaviour follows a shifted network behaviour with peaks in the evenings
Agenda

1. Introduction

2. Current/Common connected car constraints

3. Model

4. Solving the problem

5. Results
Car constraints

#1: Download (and update) only happen while the engine is on!

- Significantly limits opportunities for download
- Car rush hours overlap with network busy hours
Car constraints

#1: Download (and update) only happen while the engine is on!

- Significantly limits opportunities for download
- Car rush hours overlap with network busy hours
Car constraints

#1: Download (and update) only happen while the engine is on!

- Significantly limits opportunities for download
- Car rush hours overlap with network busy hours
#1: Download (and update) only happen while the engine is on!

- Significantly limits opportunities for download
- Car rush hours overlap with network busy hours
Car constraints

#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

- Network does not have total control over the download
Car constraints

#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

- This car typically appears 3 days/week; [Mon-Thu] are busy days.
#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

Let's consider a case where FOTA download starts on Monday.
Car constraints

#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

... and has to continue and finish on Wednesday.

Busy periods:
- Download started and didn’t finish
- Must continue in the next period
Car constraints

#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

- It is not desirable to download during busy periods

![Image of a calendar with busy periods highlighted]

Busy periods

Fri Sat Sun Mon Tue Wed Thu Fri

We want to skip these periods
#2: Once the car starts downloading, it stops only when the download finishes, possibly taking several days.

Much better scenario we wish to achieve - push data off peak

Download started and didn’t finish

Continue in the next period if needed
Network constraints

- Radio communication capacity in a given period of time – for LTE expressed in Physical Resource Blocks (PRBs)

- Capacity of other network elements

- Number of users and overall network traffic load
Objectives

- Control the admission of the cars in the network
 - Schedule the best time, for each car, to start the download

- We expect to:
 - Shift the traffic to quieter radios and non-busy periods
 - Reduce the total download time and completion rate
 - Better utilize network resources
FOTA campaign simulation model

- PRB and car usage models are built over the sampling period.
- FOTA schedule is simulated over the campaign period using actual car’s network behavior.
Agenda

1. Introduction

2. Current/Common connected car constraints

3. Model

4. Solving the problem

5. Results
Sets and constants

- Set of cars C
- Set of sectors S (region covered by a radio)
- Set of periods $P = \{0, \ldots, p_{\text{final}}\}$ where p_{final} is a valid makespan upper bound (time that the last car completes its download)
- Demand / download size d_c, for $c \in C$
- Maximum number of cars per period C^{max}
Network model

- Based on *Physical Resource Block (PRB)* utilization

- PRBs are given in percentages (0 to 100%)

- For each period of time $p \in P$ and each sector $s \in S$:
 - PRB_{sp}: average PRB utilization
 - $Volume_{sp}$: volume of data in Megabits (Mb)

- PRB utilization rate: $\gamma_{sp} = \frac{Volume_{sp}}{PRB_{sp}}$
Car model

- We only have radio connection information

- For each car $c \in C$:
 - $time_{csp}$: time spent under sector $s \in S$ in period $p \in P$ (in seconds)
 - Car PRB consumption: $k_{csp} = \frac{r \times time_{sp}}{\gamma_{sp}}$
 where r is the download rate (in Megabits per second, Mbps)
Variables – Mixed Integer Program (MIP)

- $x_{csp} \in \{0, 1\}$: $x_{csp} = 1$ indicates that car c is scheduled to download from sector s in period p

- $y_{csp} \in \mathbb{R}^+$: amount of PRB capacity from sector s consumed by car c in period p

- $s_{cp} \in \{0, 1\}$: $s_{cp} = 1$ if car c starts its download in period p

- $a_{cp} \in \{0, 1\}$: $a_{cp} = 1$ if car c is scheduled/active in period p

- $f_{cp} \in \{0, 1\}$: $f_{cp} = 1$ if car c “(pseudo-) finishes” its download in period p
Constraints – MIP

Constraint (1) restricts the car to not connect to two or more sectors simultaneously:

$$\sum_{s \in S} x_{csp} \leq 1, \quad \forall c \in C, \ p \in P$$ \hspace{1cm} (1)

Constraint (2) ensures that the car is active when scheduled for a sector:

$$a_{cp} \geq \sum_{s \in S} x_{csp}/|S|, \quad \forall c \in C, \ p \in P$$ \hspace{1cm} (2)
Constraints – MIP

Constraint (3) ensures that each car has one start period:

\[\sum_{p \in P} s_{cp} = 1, \quad \forall c \in C \]

(3)

Constraints (4) and (5) establish that when a car starts its download, it will be active (downloading) over following periods it hits the network:

\[a_{c0} = s_{c0}, \quad \forall c \in C \]

(4)

\[a_{cp} \leq s_{cp} + a_{c,p+1}, \quad \forall c \in C, \ p \in \{0, \ldots, p^{final} - 1\} \]

(5)
Constraints – MIP

Constraint (6) allows PRB utilization only when the car is scheduled in the sector.

\[y_{csp} \leq k_{csp} x_{csp}, \quad \forall c \in C, \ s \in S, \ p \in P \] \hspace{1cm} (6)

Constraint (7) ensures that there is enough PRBs for the download using its maximum PRB consumption for a given sector and period, except the last period:

\[y_{csp} \geq k_{csp}(x_{csp} - f_{cp}), \quad \forall c \in C, \ s \in S, \ p \in P \] \hspace{1cm} (7)

Both Constraints (6) and (7) reflect Car Constraint #3.
Constraints – MIP

Only one (pseudo-) finish time

\[f_{cp^\text{final}} = a_{cp^\text{final}}, \quad \forall c \in C \] (8)

\[f_{cp} \leq 1 - \sum_{p' > p} a_{cp'} / |P|, \quad \forall c \in C, \ p \in P \setminus p^\text{final} \] (9)
Constraints – MIP

Constraint (10) ensures that the total PRB utilization during the downloads does not exceed the PRB capacity in the sector for a given period:

\[\sum_{c \in C} y_{csp} \leq 100 - PRB_{sp}, \quad \forall s \in S, \ p \in P \] (10)

Constraint (11) limits the number of simultaneous downloads:

\[\sum_{c \in C} a_{cp} \leq C_{max}, \quad \forall p \in P \] (11)

Constraint (12) guarantees that the download is completed for all cars:

\[\sum_{s \in S} \sum_{p \in P} \gamma_{sp} y_{csp} = d_c, \quad \forall c \in C \] (12)
Objective function – MIP

Minimize the average completion time (to improve schedule balance)

\[
\min \sum_{c \in C} \frac{z_c}{|C|}, \tag{13}
\]

subject to \(z_c \geq pa_{cp}, \quad c \in C, \ p \in P \) \tag{14}

where \(z \in \mathbb{Z}^+ \) is a variable that defines the makespan of each car.
Agenda

1. Introduction
2. Current/Common connected car constraints
3. Model
4. Solving the problem
5. Results
Input considerations

- A campaign is usually very large. It may have:
 - Millions of cars
 - Hundreds of thousands of sectors
 - Weekly to monthly schedules with hundreds to thousands of periods:
 - Coarse to fine granularity of the network/car behavior (we selected 15-minute time bins)
Dimensionality reduction

- Pre-processing:
 - Reduce the size of the problem by segmenting cars by geographical region
 - Pre-schedule rarely seen cars
 - Pre-schedule predictable cars that appear during non-busy hours

- The remaining segments to schedule are still large:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Cars</th>
<th>Radios</th>
<th>Car/Radio Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Median</td>
</tr>
<tr>
<td>Category 1</td>
<td>505</td>
<td>45,771</td>
<td>5,710</td>
</tr>
<tr>
<td>Category 2</td>
<td>107</td>
<td>16,844</td>
<td>1,514</td>
</tr>
</tbody>
</table>
Solution: Biased Random-Key Genetic Algorithm

BRKGA evolutionary procedure

0.5 0.3 \cdots 0.1
0.1 0.7 \cdots 0.3
\vdots
0.8 0.2 \cdots 0.1

Several vectors v’s

1: Sort cars according to v
2: Build the schedule according to this order
3: Evaluate the schedule according to the average completion time

Parallel Scheduling Algorithm

Avg. completion time
Agenda

1. Introduction
2. Current/Common connected car constraints
3. Model
4. Solving the problem
5. Results
FOTA campaign simulation parameters

- 1,000,000 cars
- 200,000 sectors
- PRB model for each day of the week and 15-minute timebins makes 672 data points per cell
- Download sizes: 128 MB and 512 MB
- Download rate: 1 Mbps, 2 Mbps, 50 Mbps (proxy for “unlimited” in LTE)
Scheduling results for the simulation scenarios

<table>
<thead>
<tr>
<th>MBR (Mbps) (MB)</th>
<th>Size</th>
<th>Scheduling Strategy</th>
<th>Startup delay (minutes)</th>
<th>Incomplete downloads</th>
<th>Data on busy radios</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (52%)</td>
<td>53K</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>189</td>
<td>41K (22%)</td>
<td>4.1%</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (33%)</td>
<td>108K</td>
<td>7.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>266</td>
<td>97K (10%)</td>
<td>7.1%</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (51%)</td>
<td>36K</td>
<td>6.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>194</td>
<td>27K (25%)</td>
<td>6.1%</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (54%)</td>
<td>108K</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>182</td>
<td>44K (59%)</td>
<td>4.4%</td>
</tr>
<tr>
<td>128</td>
<td>50</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (49%)</td>
<td>24K</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>199</td>
<td>19K (20%)</td>
<td>—</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>RANDOM FOTA SCHED</td>
<td>397 (51%)</td>
<td>30K</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>193</td>
<td>24K (20%)</td>
<td>—</td>
</tr>
</tbody>
</table>
Data allocation to radio by PRB decile

512 MB download, 1 Mbps

512 MB download, 4 Mbps
Using smart scheduling (FotaSched), the traffic/data volume is shifted to quieter radios.
FOTA volume (TB) delivery over the campaign time

128 MB at 1Mbps: actual FOTA volume delivered by hour

- RANDOM
- FOTA_SCHED

Weekend

Hour of campaign
Terabytes Delivered

0 50 100 150 200 250 300
0.0 0.5 1.0 1.5 2.0

Hour of campaign
Terabytes Delivered

0 50 100 150 200 250 300
0.0 0.5 1.0 1.5 2.0
FOTA volume (TB) delivery over the campaign time

128 MB at 1Mbps: actual FOTA volume delivered by hour

Using smart scheduling (FotaSched), the traffic/data volume is shifted to quieter radios (weekends) and front part of the campaign.
Thank you!
