
180 Park Ave - Building 103
Florham Park, NJ
Using Surface Wave Propagation To Communicate An Information-Bearing Signal Through A Barrier,
Tue Sep 18 12:53:40 EDT 2012
The RF signal generated by a ZigBee radio on the outside of a building structure is conveyed to the interior of the building by guiding it along an electric cable bundle that passes through the building's wall to supply domestic electric power to the interior of the structure. The RF signal is launched by a unique coupler comprising a pair of insulated foil conductors.
Method And Apparatus For Adjusting EDCA Channel Access Parameters,
Tue Feb 28 12:50:53 EST 2012
A contention based communications channel access method emulates scheduled access by dynamically updating Enhanced Distribution Channel Access (EDCA) parameters for groups of member stations in a Wireless Local Area Network (WLAN).
Synchronizing Wireless Local Area Network Access Points,
Tue Dec 13 16:06:47 EST 2011
In a wireless local area network, a first and second access point in which the RF coverage areas overlap are synchronized by positioning a monitor station within the overlap area. The monitor station receives beacon frames from both access points and records the arrival times. A manager in communication with both access points and the monitor station calculates a retardation interval and issues a control command to the second access point to retard transmission of its beacon frame. The retardation interval is calculated such that the contention-free period of the second access point does not overlap the contention-free period of the first access point. The manager may also issue control commands to the first and second access points to adjust their contention-free periods.
Method And Apparatus For Monitoring A Material Medium,
Tue Nov 29 16:06:42 EST 2011
A material medium, such as an optical fiber or electrical cable, is commonly used to carry services, such as telecommunications or energy service. The current invention identifies the following problems which may be encountered when monitoring a material medium. They are: (1) requiring a time and labor intensive investigation to find a fault, (2) needing a significant change in a current material medium infrastructure to support a monitoring effort, or (3) reducing available bandwidth in a material medium due to a monitoring device intruding into the material medium to send data. These problems are solved, in accordance with a feature of the current invention, by monitoring a material medium with at least one diagnostic sensor, and using an electromagnetic (EM) signal, such as radio frequency (RF), signal to wirelessly transmit the sensor data. The diagnostic sensor may measure the operational health of the material medium, or may measure local environmental conditions around the material medium. Using an EM signal, such as RF, to wirelessly transmit sensor data allows for a fast, low labor monitoring approach. Additionally, it avoids a need to either; (1) transfer the data by intruding into the monitored material medium, or (2) set up an independent material medium system to transfer the data.
Intra-Premises Wireless Broadband Service Using Lumped And Distributed Wireless Radiation From Cable
Source Input,
Tue Jan 04 16:04:19 EST 2011
A premises, connected to receive broadband service(s) and also connected to a cable system, is provided with a broadband interface which connects to in-premises cabling which is coupled to consumer receivers such as a television sets, PDAs, laptops. Connected to the broadband interface is an adjunct device which channels broadband, data and voice signals supplied to an in-premises wireless system as distinguished from the signals supplied to the cable connected consumer receivers. The adjunct device formats the broadband and voice signals or any broadband service into packet format suitable for signal radiation and couples them to the in-premises coax cabling, via a diplexer, at a first selected location. At a second cable location a second diplexer, connected to the cable, separates the broadband, data and voice signals and couples them to a signal radiation device (i.e., an RF antenna or leaky coaxial cable) which radiates the signal to the immediate surrounding location. Various devices, near to the second cable location for specific services, receive the wireless signals (i.e., broadband, data and voice) from the radiating antenna.
Intra-Premises Wireless Broadband Service Using Lumped And Distributed Wireless Radiation From Cable
Source Input,
Tue Apr 13 15:03:42 EDT 2010
A premises, connected to receive broadband service(s) and also connected to a cable system, is provided with a broadband interface which connects to in-premises cabling which is coupled to consumer receivers such as a television sets, PDAs, laptops. Connected to the broadband interface is an adjunct device which channels broadband, data and voice signals supplied to an in-premises wireless system as distinguished from the signals supplied to the cable connected consumer receivers. The adjunct device formats the broadband and voice signals or any broadband service into packet format suitable for signal radiation and couples them to the in-premises coax cabling, via a diplexer, at a first selected location. At a second cable location a second diplexer, connected to the cable, separates the broadband, data and voice signals and couples them to a signal radiation device (i.e., an RF antenna or leaky coaxial cable) which radiates the signal to the immediate surrounding location. Various devices, near to the second cable location for specific services, receive the wireless signals (i.e., broadband, data and voice) from the radiating antenna.
Intra-premises wireless broadband service using lumped and distributed wireless radiation from cable source input,
Tue May 06 18:12:47 EDT 2008
A premises, connected to receive broadband service(s) and also connected to a cable system, is provided with a broadband interface which connects to in-premises cabling which is coupled to consumer receivers such as a television sets, PDAs, laptops. Connected to the broadband interface is an adjunct device which channels broadband, data and voice signals supplied to an in-premises wireless system as distinguished from the signals supplied to the cable connected consumer receivers. The adjunct device formats the broadband and voice signals or any broadband service into packet format suitable for signal radiation and couples them to the in-premises coax cabling, via a diplexer, at a first selected location. At a second cable location a second diplexer, connected to the cable, separates the broadband, data and voice signals and couples them to a signal radiation device (i.e., an RF antenna or leaky coaxial cable) which radiates the signal to the immediate surrounding location. Various devices, near to the second cable location for specific services, receive the wireless signals (i.e., broadband, data and voice) from the radiating antenna.
Intra-premises wireless broadband service using lumped and distributed wireless radiation from cable source input,
Tue Jun 15 18:09:49 EDT 2004
A premises, connected to receive broadband service(s) and also connected to a cable system, is provided with a broadband interface which connects to in-premises cabling which is coupled to consumer receivers such as a television sets, PDAs, laptops. Connected to the broadband interface is an adjunct device which channels broadband, data and voice signals supplied to an in-premises wireless system as distinguished from the signals supplied to the cable connected consumer receivers. The adjunct device formats the broadband and voice signals or any broadband service into packet format suitable for signal radiation and couples them to the in-premises coax cabling, via a diplexer, at a first selected location. At a second cable location a second diplexer, connected to the cable, separates the broadband, data and voice signals and couples them to a signal radiation device (i.e., an RF antenna or leaky coaxial cable) which radiates the signal to the immediate surrounding location. Various devices, near to the second cable location for specific services, receive the wireless signals (i.e., broadband, data and voice) from the radiating antenna.