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ABSTRACT
E�cient management and control of modern and next-gen net-

works is of paramount importance as networks have to maintain

highly reliable service quality whilst supporting rapid growth in

tra�c demand and new application services. Rapid mitigation of

network service degradations is a key factor in delivering high

service quality. Automation is vital to achieving rapid mitigation

of issues, particularly at the network edge where the scale and

diversity is the greatest. �is automation involves the rapid detec-

tion, localization and (where possible) repair of service-impacting

faults and performance impairments. However, the most signi�cant

challenge here is knowing what events to detect, how to correlate

events to localize an issue and what mitigation actions should be

performed in response to the identi�ed issues. �ese are de�ned as

policies to systems such as ECOMP [1].

In this paper, we present AESOP, a data-driven intelligent system

to facilitate automatic learning of policies and rules for triggering

remedial actions in networks. AESOP combines best operational

practices (domain knowledge) with a variety of measurement data

to learn and validate operational policies to mitigate service issues

in networks. AESOP’s design addresses the following key chal-

lenges: (i) learning from high-dimensional noisy data, (ii) capturing
multiple fault models, (iii) modeling the high service-cost of false

positives, and (iv) accounting for the evolving network infrastruc-

ture. We present the design of our system and show results from

our ongoing experiments to show the e�ectiveness of our policy

leaning framework.

CCS CONCEPTS
•Computingmethodologies→Rule learning; Supervised learn-
ing by classi�cation; •Networks→ Network management;
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1 INTRODUCTION
Today’s networks serve hundreds of petabytes of tra�c every day.

As consumer demand for high bandwidth services such as video
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Figure 1: Policy learning based automation loop for network service
mitigation

continues to explode, network tra�c volumes are expected to con-

tinue to grow at a rapid pace. Supporting such a continued rapid

growth in network tra�c volumes without a corresponding in-

crease in network operations sta� requires increasingly e�cient

management and control of increasingly complex networks.

Fault and performance management constitutes a signi�cant

portion of the day-to-day operations activities in large networks

or distributed systems [8]. As the name suggests, fault and per-

formance management deals with the fault or performance degra-

dation conditions occurring in networks. �e operational steps

include timely detection of the fault or performance degradation

conditions in the system, localizing the faulty or underperforming

network elements, and devising and deploying mitigation measures

in the system – e.g., by performing a reboot on a network device,

or switching tra�c to a secondary path.

Traditional network management has relied on considerable

domain expertise and operational knowledge accumulated in Oper-

ations personnel through years of experience. To improve customer

service experience and reduce operational cost, network service

providers are heavily investing in advanced automation technolo-

gies to facilitate the real-time response to fault and performance

management. For example, in 2016, AT&T unveiled ECOMP [1], a

cloud-based scalable so�ware platform for policy driven automa-
tion of network management functions. �ese automation systems

would be governed by a set of operations’ policies which in the case

of fault and performance management de�ne the trigger conditions

and the procedures to automatically respond to service impairments.

Traditionally, the policies or rules triggering the responses to ser-

vice impairments are de�ned through domain expertise. However,

this is typically incomplete and hard to capture as this knowledge is

distributed across large number of operation personnel. Instead, we

propose using a machine-learning based approach to identifying

these policies. �e input to our learning based system comes from

vast numbers of logs capturing the actions that network operators

took in the network along with high-dimensional measurement



time-series data capturing the conditions that existed in the net-

work as these actions were performed. Our goal in this work is

to design a system that automatically learns and validates policies

for the automated detection, localization and repair of fault and

performance impairments in networks. We term this problem as

policy learning. �e complete automation cycle enabled by our pol-

icy learning approach is illustrated in Figure 1. For the remainder

of this paper, we use cellular networks as a use case to illustrate our

design and for evaluation purposes. However, our framework and

core design principles of policy driven automation are applicable

more generally to other types of networks and distributed systems

- comprised of physical and/or virtual network functions (network

elements).

In this work, we focus on policies for mitigating network service

impairments. Such policies would specify a remedial action, such

as rebooting a cellular base station, rese�ing an antenna element,

etc - actions which are taken in response to identi�ed impairments.

�e typically vast network scale results in the same underlying

network impairments typically appearing repeatedly - albeit in

di�erent locations and at various times of day. Impairments caused

by a common so�ware bug or underlying root cause would be

repaired via a common remedial action. Given the complexity of the

so�ware and network conditions, such responses to given network

conditions are o�en determined by operators through experience,

with this knowledge (inconsistently) distributed across possibly

large numbers of operators. If there is a su�cient number of these

impairment instances, we hypothesize that we could automatically

learn the policies that de�ne the conditions under which di�erent

remedial actions should be invoked. With these learned policies,

the remedial actions could be fully automated
1
.

1.1 Challenges
In practice, however, learning operational policies for network man-

agement and control is not a pure data mining exercise. A system

that learns policies to mitigate network service issues needs to have

a modular and �exible architecture fusing operational knowledge

into the learning pipeline to address the following challenges:

(1) Taking incorrect remedial actions: A huge challenge to pol-

icy learning comes from the typically high service cost of an

incorrect action. A remedial action that is just unnecessary will

still likely impact customer experience during the mitigation

period; an incorrect action may result in additional complica-

tions. �us the false positives have to be very low so that the

service downtime is acceptable. Our goal instead is to learn

policies that can automate as many correct remedial actions as

possible while keeping the false positives extremely low.

(2) Multiple faults: A second challenge comes from multiple

underlying types of impairments (fault or performance degra-

dation) that may require similar remedial actions. �e available

remedial action log does not have annotation of the underlying

fault or service degradation that was the reason that the action

was taken. �us, we would like to learn a collection of policies

1
We focus only on the learning aspects in this work. �e system for automating the

remedial action based on a learned policy (e.g., a system for automatically rebooting a

base station) is out of the scope of this paper.

where each policy implicitly captures an underlying type of

network impairment and its associated remedial action.

(3) Evolving heterogeneous infrastructure: �e network in-

frastructure is constantly in a state of �ux, with so�ware up-

grades, con�guration changes, new technologies, new types

of devices and new applications appearing on an ongoing ba-

sis. Any policy for a remedial action is typically speci�c to

an operational environment (e.g., a combination of so�ware

version, con�guration, services activated, protocols and devices

supported, etc.) under which it applies. �us, we would like

to learn policies for di�erent operational environments and

diverse implicit impairment conditions.

In addition, the policies learned should assist the experts in �nd-

ing permanent �xes for the faults. Domain experts typically do this

through root-cause analysis. �e learned policies can aid experts

signi�cantly by identifying relevant measurement counters for fur-

ther investigation. Further, tracking the operational environment

can also help experts with root cause analysis, by detecting broad

trends in automated remedial actions. For example, if a number of

automatically detected service issues relate to network elements

with a speci�c so�ware version and a speci�c type of service degra-

dation, the vendor could be contacted to identify a permanent �x.

1.2 Contributions
In this paper, we describe AESOP (Automatic Extraction of Signa-
tures for Operation Policies), a system for automatically learning

policies for mitigating network service impairments. Our key in-

sight is the following: while raw measurement data and logs do not

reveal the underlying faults, we can design higher-level statistically-

derived symptoms that can be used as pivots to learn policies for

di�erent operational environments. To the best of our knowledge,

we present the �rst platform for automated policy learning in net-

works. In particular, our main contributions are as follows:

Policy learning framework: We present a novel data-driven

framework and architecture for automatically learning policies for

mitigating network service impairments. Our system is modular

and �exible enough to con�gure based on di�erent use-cases.

Modeling and algorithms: We develop a data-driven system

model that re�ects key principles of network operations, models

service degradation in a systematic manner, and learns operations’

policies for di�erent operational environments and di�erent types

of service degradation.

Experimental results: We present results from our ongoing

experiments to illustrate the e�ectiveness of our system in the

context of cellular networks. We show that the policies learned

can correctly predict a sizable percentage (up to around 50%) of

remedial actions from a target set of predictable instances.

2 DATA DRIVEN POLICY LEARNING
Our goal is to design a system that can learn policies for mitigating

network service issues. Our core design principles and framework

apply to all kinds of networks including SDN, NFV based networks,

wireline and cellular networks. However, we will illustrate our

design with the aid of a cellular LTE network se�ing. To this end,

we �rst introduce some terminology for cellular LTE networks.



In LTE networks, the main network element responsible for

wireless transmission and reception is known as the eNodeB (the

so-called “cell towers”). Each eNodeB has multiple transmi�ers; a

mobile device is associated with any one of the eNodeB’s transmit-

ters. A wide range of measurements are reported by the eNodeB;

these measurements are collected at the eNodeB and sent to data

centers periodically.

2.1 Network Measurement Data
�e di�erent data types used to present our system design and

evaluation are as follows:

(1) Measurement counters: �ese are raw performance mea-

surement counters reported by eNodeBs. �ese counters are

reported at �xed measurement intervals (typically 15 min),

thereby creating time-series data. Example counters include

the number of connection a�empts in a measurement window,

the number of call failures during hand-o� to a neighboring

cell, the number of bytes downloaded, etc. Each eNodeB reports

more than a thousand measurement counters.

(2) Service related Key Performance Indicators: For each eN-

odeB, service related Key Performance Indicators (service KPIs)

are measurements that show quality of service delivered to

end-users. In general, there are other KPIs that are not directly

related to service. However, for the purpose of this paper we

are mainly interested in service KPIs and we simply refer to

them as KPIs in rest of the paper. KPIs are typically based on

a formula that takes as input the raw measurement counters

described in the preceding paragraph. Some example service

KPIs include downlink throughput, call accessibility percent-

age (i.e., a measure of the fraction of a�empted calls that were

successful), call retainability (i.e., a measure of the fraction of

calls that were not dropped) etc. �e important point to note is

that, frequently used KPIs are much fewer in number, typically

no more than a few tens of time series. For ease of exposition,

we will assume that higher values of service KPIs implies be�er

service quality. �is is true for the examples of service KPIs

given in this paragraph.

(3) Remedial action logs: �ese are speci�c network logs that

record details (timestamp, steps etc.) of remedial actions taken

at di�erent eNodeBs by expert operations engineers. When

an eNodeB experiences degraded performance for an extended

period of time, a ticket is created to alert a network engineer,

who takes a suitable remedial action, e.g., so�ware reset or

hardware reboot of the eNodeB. �ese actions are logged using

network management so�ware.

(4) Network con�guration: �e network con�guration data cap-

tures how each element is con�gured, including the so�ware

version and the parameters that specify the network element�s

functionality. Since these con�gurations change over time, the

data also contains the date associated with each con�guration

snapshot. We will refer to the so�ware version and con�gura-

tion template combination as the operational environment.

Remark. We present our system and evaluation in the context of
the preceding types of data. However, our system architecture and
policy learning framework is general; it can incorporate other types
of data including alarms, syslogs, service related tickets, etc.

Use case speci�c meta-data: So far we have described some dif-

ferent types of data that are typically extensively leveraged for

operating a network. However, there are additional properties of

the data that depends on the speci�cs of a given network and ser-

vice. �ese properties can be captured as meta-data and the design

of AESOP accounts for this meta-data. �e speci�cation of this

meta-data can be con�gured by a domain expert on a per use case

basis. Precisely, our system accounts for two types of use case spe-

ci�c meta-data, namely primary KPIs and measurement categories.
�ese are as follows in the context of cellular 4G LTE network:

• Primary KPI: �ese are the most important KPIs that accu-

rately re�ect the service quality of an eNodeB. Put simply, if

the primary KPIs are not degraded, the eNodeB is considered

to be in good health. Domain experts can hand-pick the list

of primary KPIs (typically around ten or so) based on expert

knowledge of critical service metrics. In a la�er section, we

show how the choice of primary KPIs is used to de�ne the

notion of a symptom associated with a potentially degraded

eNodeB.

• Measurement categories: Although there are over a thou-

sand performancemeasurement counters, many of thempresent

di�erent performance aspects of a common underlying physical

phenomena or a common networking protocol. �us, measure-

ment counters can be categorized into correlated groups within

which many counters will o�en provide redundant information.

�e categorization can be obtained in a number of ways: label-

ing by a domain expert, common keywords in counter names,

originating protocol or phenomena of the counters, etc. For

policy learning, categorization has two bene�ts: (i) dimension-

ality reduction through a two-stage process (see Section 3) that

isolates important features in each category and pools them

together, and (ii) identi�cation of higher-level components re-

sponsible for the network impairment, thus enabling easier

root-cause analysis.

Scale of data: Depending on the network, the scale of the data

could vary and is typically very large. In the cellular network

studied here, there are around 900 million distinct measurements

per day for a large US metropolitan area (e.g., New York City).

2.2 Problem Formulation
Our goal in this work is to learn policies for network problemmitiga-

tion by combining data-driven intelligence with domain knowledge.

To this end, we formalize the notion of a policy in the context of

our work. Before we do that, we will introduce some key notations.

We present our problem in terms of the speci�c application of re-

booting eNodeBs. However, the framework is general and can be

applied to other areas of a network, di�erent mitigation actions

and di�erent network data. For the use case analyzed here, we are

given the following historical data:

(1) Network measurement counters xc (e, t ) as a function of eN-

odeB e and time t , along with measurement KPIs xkpi (e, t ),
where (xc , xkpi ) ∈ Rm

.

(2) Expert aided network logs a(e, t ) which represent actions that

were taken on eNodeB e at time t wherea(.) ∈ A andA is a �nite

set of remedial actions. To keep the notation generic, whenever

there is no remedial action taken on an eNodeB (during normal



working conditions), we consider this as a special action that

can be termed “no-remedial-action required.”

Policies for a remedial action: In simple terms, a policy for a

remedial action is a mapping from network measurement coun-

ters/KPIs to a possible remedial action on a given network element

(eNodeB in our speci�c use case). However, the applicability of each

policy to a network element (eNodeB) depends on (i) the operating
environment (so�ware version and con�guration) of the eNodeB,

and (ii) symptoms or degradation condition (to be made precise in

the next section) of the eNodeB if any. More formally, each policy

is characterized by the following:

• Policy domain: �is de�nes the speci�c operating environment

of an eNodeB for which a policy is applicable and the speci�c

symptoms or degradation conditions of the eNodeB. We will

provide a more formal de�nition of symptom in a later section,

but intuitively each symptom speci�es the set of primary KPIs

that were severely degraded thus requiring a possible remedial

action.

• Policy function: �is function is a mapping from (xc , xkpi ) to
a ∈ A, the set of actions. Note that, WLOG, the set of actions

also includes “no-remedial-action required.”

Problem Statement: �e policy learning problem can be stated as

follows: learn all possible policies (policy domain and function) based
on historical network counters/KPIs xc (e, t ) and xkpi (e, t ) along with
action logs a(e, t ). �e learning objective is to ensure that each

policy function maps to an accurate remedial action that can �x

the service degradation while the false positive rate of taking a

remedial action (excluding “no-remedial-action” required) is less

than ϵ , a small number. �is is because an incorrect action on an

eNodeB can lead to small but non-negligible loss of service on the

eNodeB when the eNodeB is under repair.

We will show in the next sub-section how this can be cast as a

classi�cation problem a�er suitable data-processing steps.

2.3 AESOP Overview
As described earlier, using machine learning for this problem needs

to address several challenges: high-dimensional noisy data, multiple

fault models, low false positives, rapidly-changing infrastructure

and more. To address these challenges, we take the following data-

processing steps to construct training examples:

(1) Computing base-line summaries: �is step computes spatio-

temporal statistical summaries by computing statistics (mean,

median, quantiles) for each measurement counter/KPI and for

each eNodeB at di�erent times of the day. �is step is useful

to subsequently convert raw measurements into a normalized

anomaly score.

(2) Data normalization via anomaly scoring: �emain functionality

of this step is to perform normalization of raw measurement

values by converting raw data into anomaly scores.

(3) Symptom modeling: �is step assigns symptom, if any, to every

measurement data instance. Since the action logs do not have

annotation for possible fault, the symptoms allow us to group

measurement data corresponding to di�erent remedial actions

in a systematic manner. �e symptoms are assigned based

on combinations of degraded primary KPIs. Subsequently, this

step constructs the training examples by suitable data cleansing,

Figure 2: Key system modules of the policy learning framework

Figure 3: �e behavior of a key KPI (downlink throughput) from
two di�erent cellular eNodeBs on a cellular operator’s network. �e
exact values on the y-axis are not shown as the data is proprietary.

downsampling, and grouping of training examples; each group

will have a common set of policies.

(4) Feature extraction and classi�cation: �is has twomachine learn-

ing functionalities. First, this module performs dimensionality

reduction of the data by combining expert-aided feature cate-

gorization with standard feature extraction techniques. Second,

it learns suitable classi�ers so that the desirable properties in

our problem statement in Section 2.2 are satis�ed.

�ese steps learn the policies periodically (say, once in aweek). In

addition, there is also a separate module that validates the policies

learned. Figure 2 shows the interaction of the di�erent system

modules carrying out the above steps.

3 AESOP FRAMEWORK
We now describe the models and algorithms used in the AESOP

framework for processing the network data and learning policies.

3.1 Computing Statistical Baselines
�e statistical baseline for each counter and KPI must account for

the underlying spatio-temporal pa�ern. Cellular network data is

known to exhibit time-of-day and day-of-week pa�erns for many

key metrics. As an illustration, Figure 3 depicts the downlink

throughput for two di�erent eNodeBs over a one week period,

illustrating the clear time varying nature of the throughput. We

therefore compute statistical baselines using the following steps:



(1) Binning: For each data sample from ameasurement counter/KPI,

we associate a spatio-temporal bin depending on three param-

eters: hour of day, day of week, and eNodeB of the data. �e

binning is done over a time-window that is typically a few

months to strike a balance between capturing slow changes in

network behavior and having su�cient samples in each bin

for computing reliable statistical estimates. Also, prior to the

binning process, missing data is given a special label.

(2) Computing statistics: Since we do not want to include any

anomalous data (due to fault or other planned operational ac-

tivities) in our statistical baselines, we �rst do data cleansing

as follows: exclude missing data and �lter out data that corre-

sponds to a time-window (24 hours typically) within which the

eNodeB underwent some remedial action or when the eNodeB

was in maintenance mode. Once the data cleansing is done,

the ensemble of remaining data in each bin is used to com-

pute di�erent statistics: mean, standard deviation, quantiles

(10, 25, 50, 75, 90).

3.2 Data Normalization via Anomaly Scoring
Since the data can have very di�erent ranges across measurement

counters/KPIs, originating eNodeBs and measurement times, we

normalize the measurements to get all data in the same scale. Many

machine learning algorithms rely on the di�erent dimensions to be

in the same scale. Normalization also helps us in feature extraction

by allowing us to compare importance weight of di�erent measure-

ments in a meaningful manner. Since our goal is to learn policies

for remedial actions that �x service problems, as a design choice,

we perform this normalization via anomaly scoring. To motivate

this for cellular networks, consider the following example: since

cellular download speed depends on network load and eNodeB con-

�guration, a download speed of 2 Mbps could be perfectly normal

at 9 AM in a busy business area but highly abnormal at 4 PM on

weekends in a residential area. To learn data-driven policies, we

need to have a consistent anomaly score that re�ects these two

scenarios.

To compute the anomaly score, we make use of IQR (inter-

quantile range) based robust statistics combined with notions of

outliers and extreme outliers in data. For each measurement data

we �rst retrieve the statistics of the associated spatio-temporal bin

as de�ned in Section 3.1. Suppose, for a given measurement x , that

the 25
th
and 75

th
quantiles for the corresponding bin are Q1 and

Q3 respectively. We also have IQR = Q3 −Q1.We wish to �nd a

mapping so that the following is satis�ed: (i) all anomaly scores lie

in the range [0, 1], (ii) extreme outliers de�ned as 3× IQR aboveQ3

or 3 × IQR below Q1 are mapped to the right and le� end-points

of the range, 1 and 0 respectively. One such mapping that satis�es

the above is as follows:

fas (x ) =



max

(
0, 0.5(1 −

Q1−x
3IQR )

)
x < Q1

0.5 x ∈ [Q1, Q3]

min

(
1, 0.5(1 +

x−Q3

3IQR )
)

x > Q3

(1)

Indeed, fas (Q1 − 3IQR) = 0 and fas (Q3 + 3IQR) = 1.

Our above choice is robust to skew in data statistics (unlike a

z-score based statistic) and is also computationally light (unlike

sophisticated measures based on time-series anomaly detection).

�is is an important requirement, given the dimension of the data

(over a thousand per eNodeB per measurement instance).

Capturing time-series history: We also augment the features

by computing the time-average statistics of each normalized mea-

surement. Speci�cally, we compute rolling statistics (median and

mean) of the normalized anomaly scores over a �xed time window,

set as 2 hours.

In summary, this module performs the following functions:

(1) For each dimension in themeasurement vector (xc (e, t ), xkpi (e, t )),
the module computes the anomaly scores given by (1). Denote

the vector of the anomaly scores by (zc (e, t ), zkpi (e, t )).
(2) For each dimension in (zc (e, t ), zkpi (e, t )), themodule computes

the windowed running median and mean values over a time

window [t−W , t] where typicallyW = 2 hrs which corresponds

to the past eight measurements since measurements are sent

once every 15 min. �e choice ofW re�ects the fact that we

wish to learn policies that can rapidly detect service issues.W
is a con�gurable parameter that should be set based on expert

operational insights.

Missing data: As discussed in Section 3.1, missing measure-

ments could be indicative of a problem or could instead be the

result of a data collection issue. �us we assign a special symbol

for missing data. We also tested encoding strategies like one-hot

encoding. However, our experience was that this considerably in-

creases the dimensionality (already into the thousands) without

providing appreciable gains in e�ectiveness of our models.

3.3 Symptom Modeling
A remedial action on a network element is typically taken in re-

sponse to an underlying fault that causes some service problem.

However, the action log which we are using to capture the dates,

times and locations of given operator actions (e.g., eNodeB reboots)

does not capture any information regarding why an action was

taken by a network operator. To overcome this challenge, AESOP’s

design makes use of the following insight: each underlying root-
cause manifests as a degraded condition on some subset of the most
important KPIs. We refer to these KPIs as the primary KPIs. �e pri-

mary KPIs are speci�ed as inputs to AESOP - meta-data provided

by domain experts. �us, a symptom is simply some combination

of degraded primary KPIs. To assist in a formal de�nition of a

symptom, we �rst de�ne the degradation score of a KPI.

Definition 1 (KPI degradation score). Givenwindowed running-
median anomaly score of a measurement KPI ẑ (t ), degradation score
of the KPI is de�ned by Scored (ẑ (t )) =

∑K
k=0 1(µ−ẑ (t )≥Lk ) where

µ = 0.5 is the nominal anomaly score and Lk ’s are discretization
levels (e.g, L0 = 0.1,L1 = 0.2,L2 = 0.3).

Definition 2 (Measurement symptom). Given a time-windowed
running median anomaly score of a primary KPI-vector ẑkpi (t ) =
(ẑ1 (t ), ẑ2 (t ) . . .), the underlying symptom of the measurement is
characterized by two properties: (i) a symptom score given by the
maximum degradation score MaxScored (ẑkpi) = maxi Scored (ẑi ),
and (ii) symptom KPIs given by the set of KPIs with the maximum
degradation score, i.e. the set {i : Scored (ẑi ) = MaxScored (zkpi)}

Intuitively, the notion of a symptom captures the directions of

the KPI vector that are most abnormal (in a probabilistic order

of magnitude sense). When all KPIs are within Q1 and Q3, the
symptom has an associated degradation score of zero.



We now describe how we construct training examples. �e

training examples consist of two sets of records - measurements

that were followed by a remedial action and measurements during

normal network behavior. We perform the following steps:

(1) Symptom computation: For each measurement, we compute the

associated symptom based on the preceding de�nition.

(2) Extracting successful remedial actions: �ough remedial actions

are taken to mitigate service impairments, sometimes a given

remedial action may not �x the service problem in which case

an operations engineer may try an alternative remedial action.

Since we wish to learn pa�erns for remedial actions that �xed

the service problem, it is imperative to compute the remedial

actions (from the set of all remedial actions in remedial action

log) that successfully mitigated service impairments. To extract

the successful remedial actions, for each remedial action we

compute an aggregate
2
degradation score across KPIs in �xed

length time windows before and a�er each remedial action.

Any remedial action that did not result in an improvement

based on this aggregate score is removed from the training data

set.

(3) Downsampling: When there is a service problem at an eNodeB,

it gets manifested in terms of di�erent symptoms at di�erent

times (prior to the remedial action). �is is because degrada-

tions for di�erent KPIs have some degree of correlation. �is

raises an important question: which instances and correspond-

ing symptoms should be represented in the training data for a

particular remedial action? Since our goal is to learn policies for

mitigating service impairment, a natural choice is to use those

instances when the service impairment was most severe. In our

framework, we construct a single training example per reme-

dial action as follows: we pick the measurement corresponding

to the worst aggregate degradation score in theTh=12 hr period
leading up to the remedial action. For constructing training

data corresponding to measurements of normal behavior, we

randomly sample data from normal behavior such that there

is at most one measurement from an eNodeB on a single day;

this ensures statistical independence of the training examples.

(4) Grouping for identifying policy domains: Finally, we group the

training examples from each remedial action based on the symp-

tom and additional data related to the operational environment

of an eNodeB.�e key idea is to learn policies for each group in-

dividually, as service problems in each group are likely to have

a common underlying pa�ern. Note that, a group re�ects a

policy domain corresponding to policies learned for the group.

Symptom pooling: Ideally we wish to learn policies for each

underlying symptom. �is is a challenge for symptoms without

su�cient training data to learn pa�erns. For example, suppose

for an operational environment, there are (i) 100 remedial actions

corresponding to a symptom with KPI-1 and KPI-2 both simultane-

ously worst hit with a degradation score of 3, and (ii) there are 15

remedial actions corresponding to symptoms where KPI-1, KPI-2

and KPI-3 are worst hit with a degradation score of 3. In this case,

we pool the la�er training examples with the former. In general,

whenever the size of training data set is less than a threshold for

2
Aggregate degradation score is the normed (L2 norm) score across individual KPI

degradation scores.

some symptom s1, we pool it with another symptom s2 such s1 and
s2 have common degraded KPIs; this process can be iterated a few

times if required.

3.4 Feature Extraction and Classi�cation
We will describe our models assuming a single remedial action.

�e extension to multiple remedial actions is similar to extending

2-class classi�cation to a multiclass classi�cation. Without loss

of generality, we consider data corresponding to a single group
of training examples from the remedial action since we wish to

learn the policies for each group separately. Recall that each group

(policy domain) is characterized by a symptom, so�ware version

and con�guration as outlined in Section 3.3. In this section, we say

measurements to mean “measurements normalized via anomaly

scores.”

A�er constructing the training examples in each group using

the data-processing steps discussed in the previous section, let

zi , i, 1, 2, . . . ,m be the set of measurements, where i ∈ [1,m1] cor-

responds to measurements prior to the remedial action (class-R) and

i ∈ [m1 + 1,m] corresponds to measurements during normal net-

work behavior (class-N). Let yi be the binary variable denoting the

two classes, i.e., yi = 1 for i ∈ [1,m1] and yi = 0 for ∈ [m1 + 1,m].

We will also use the notation D+ = {zi : i ∈ [1,m1]},D
− = {zi :

i ∈ [m1 + 1,m]},D = D+ ∪ D−. Our goal is to compute a map-

ping y = h(z) so that we maximize the true positives subject to

low false positives. Denoting PrD+ (h(z)) = Pr(h(z) | z ∈ D+) and
PrD− (h(z)) = Pr(h(z) | z ∈ D−), we wish to solve the following

problem:

max

h:D→{0,1}
PrD+ (h(z) = 1) s.t. PrD− (h(z) = 1) ≤ ϵ

In log-domain, the above problem is equivalent to

max

h:D→{0,1}
log PrD+ (h(z) = 1)

s.t. log PrD− (h(z) = 0) ≥ Kϵ , (2)

where Kϵ = log(1 − ϵ ). �ough this is a constrained optimiza-

tion problem, this can be cast into an unconstrained problem using

Lagrangian duality principles [4]. Under suitable convexity assump-

tions [4], (2) is equivalent to solving the following unconstrained

problem:

min

λ≥0
max

h:D→{0,1}
L (h(.); λ)

L (h(.); λ) = log PrD+ (h(z) = 1) + λ(log PrD− (h(z) = 0) − Kϵ ) ,
(3)

where L (.) is the Lagrangian of the original constrained problem.

Note that for a given value of λ, the expression in (3) is exactly

the same as log-likelihood of the training data with the class-N

examples weighted by λ. �us, we have a standard classi�cation

problemwhere the optimal classi�er is computed based onmaximiz-

ing log-likelihood of the training data; also, there is an additional

hyper-parameter λ which needs to be optimized.

We now describe our feature extraction and learning steps.

3.4.1 Feature Extraction. �e measurement data has around

1100 counters and around 2200 dimensions once we augment the

feature space with rolling time window based statistics (median

or mean). �us, it is very important to select the right features



to learn policies that are e�ective. Rather than applying a feature

extraction methodology to the entire pool of features, we can make

use of expert aided measurement categories as each category has

features that relate to a common underlying phenomena or protocol.

For example, in cellular networks, a very important KPI is the

fraction of calls not dropped when mobile users move across cell

boundaries. When a call is dropped, it is captured by multiple

measurement counters corresponding to di�erent protocols and

events. Expert knowledge provides a measurement category for all

such measurements as meta-data. �us, for symptoms related to

this KPI, we can focus on this set of features and perform feature

extraction much more e�ciently.

To this end, our feature extraction step identi�es the top features

in each measurement category and then pools them together. �is

ensures that the most important feature each related group of fea-

tures are used in learning. See Section 3.5 on how this approach

lends to interpretable policies.

For extracting features from a category of measurements we

proceed as follows. First, we project training example-i zi into a

lower dimensional space consisting of measurements belonging to

this category. Next, we use stability selection [15] which repeatedly

uses a random subset of examples and a random subset of features

to perform randomized logistic regression with L1 regularization;

the repetitions are aggregated to produce an importance weight

for each feature. Once the feature weights are chosen, we can drop

all features with weight below a threshold relative to the most

important feature in a measurement category.

3.4.2 Classification and regularization. �e classi�cation objec-

tive is to compute whether a given measurement instance can be

classi�ed as normal behavior or as a service issue �xable through

the remedial action. We will use logistic-regression based classi�er

for our purpose as follows. According to (3), this boils down to

maximizing

Obj (w | λ, β ) = log PrD+ (h(z) = 1) +λ log PrD− (h(z) = 0) −Ω(w)

where y = h(z) is modeled by a sigmoid logistic function as

Pr(h(z) = 1) =
1

1 + exp(−w0 −wT z)
. (4)

�ere are two hyper-parameters of the classi�cation step: λ which

is the weight of class-N in (3), and a cut-of factor for feature selec-

tion β which decides relative importance of the most and the least

important feature from eachmeasurement category. �e term Ω(w)
is a regularization term for which we choose elastic net

3
. Elastic

net provides robustness by striking a balance between sparsity of

features and capturing groups of correlated features.

Tuning classi�er for low false positives: Once the model is trained

by computing the optimalw, we need a cut o� for class probabilities.

We choose this to satisfy the false positive constraint. Denoting

p (h(zi )) as the value of Pr(h(zi ) = 1) for the computed optimal w,

this can be done as follows: (i) based on the trained model, sort the

values of p (h(zi )) for all i belonging to class-N, (ii) compute the

(1 − ϵ )th quantile of the sorted values of p (h(zi )) from class-N.

3
Elastic net is a linear combination of L1 and L2 regularization.

Hyper-parameter search: �e previous steps are for a given choice

of hyper-parameter. �e suitable value of hyper-parameter com-

bination (λ, β ) is chosen through a grid-search over reasonable

values. Each choice of the tuple is evaluated through a K-fold
cross-validation where K = 10.

3.4.3 Boosting. Training data corresponding to a given symp-

tomwithin a group could have multiple underlying pa�erns leading

to the same remedial action. �us, we would like to compute multi-

ple policies within each group. A natural way to express this would

be to use a disjunction (i.e., logical OR) of multiple policies within

each group. Indeed, even in manual operations, upon dissecting the

data, the next step is to check if one of a few simplistic conditions

are violated. We use a boosting-like [7] approach to extend our

classi�cation based policy learning to learn disjunction of policies

within each group. �ere is a rich set of literature on di�erent vari-

ants of boosting that could be adapted to our se�ing. Suppose, for a

training example group, we wish to �nd the disjunction of policies

Hk (z) = ∨
k
i=1hk (z) where hk is the kth rule. Le�ing TPRk and

FPRk be the true positive rate and false positive rate respectively

a�er learning the kth rule, we can see that,

TPRk = PrD+ (Hk−1 (z) ∨ hk (z) = 1)

= TPRk−1 + PrD+ (Hk−1 (z) = 0)PrD+ (hk (z) = 1 | Hk−1 (z) = 0)

Also, we can write FPRk ≤ FPRk−1 + PrD− (hk (z) = 1). Say we

cap the number of boosting iterations to, say, N = 3, then FPRk ≤
ϵ is ensured if PrD− (hk (z) = 1) ≤ ϵ/N . Since, PrD+ (hk (z) =
1 |Hk−1 (z) = 0) can rewri�en as PrD+∩Ik−1 (hk (z) = 1) where Ik−1
are the class-R examples incorrectly classi�ed till iteration-(k − 1),
in iteration-k , we must solve

max

hk
PrD+∩Ik−1 (hk (z) = 1) s.t. PrD− (hk (z) = 1) ≤ ϵ ′ ,

where ϵ ′ = ϵ/N where N is the maximum boosting iterations. �is

is similar to our original problem except that, before iteration-k , we
must remove all correctly classi�ed training examples from class-R

till iteration-(k − 1).

3.5 Interpretability
�e structure of a policy could guide an expert towards �nding a

permanent �x for the problem as follows. First, the expert obtains

the symptom associated with the policy. Next, by considering the

degraded KPI/s associated with this symptom, the domain expert

gets a very good idea about the measurement categories that could

get impacted in order of criticality (order depends on the degraded

KPI). �e feature/s with highest weight (in the classi�cation rule)

within a category provides a glimpse into the faults captured by

the policy which could be investigated using raw data for di�erent

eNodeBs (from the training set) before the remedial action. �is

way, an expert obtains the key a�ected measurements, in order of

criticality, for a given fault which can be then be used to �x the

issue by consultation with the vendor.

4 EVALUATION
Implementation: We have implemented the system on a Linux

based high performance computing cluster with 1 TB RAM on each



machine. �e implementation is Python-based and uses process-

based parallel programming constructs to speed up the training

steps. We are also working on an Apache Spark based implementa-

tion to evaluate possible gains in computing speed.

We now evaluate AESOP using data collected from an opera-

tional cellular network in a major US metropolitan region in the US

East coast. �e area consisted of around 1800 eNodeBs. Over the

course of 3 months of training data, we encountered �ve di�erent

operational environments (so�ware version and con�guration).

4.1 Experiment Setup
Measurement data for training: �e system learns the policies

based on 3 months of history and the policies are updated once a

month. �e data consisted of around 1100 dimensions (consisting of

measurement counters and KPIs) collected every 15 minutes . �e

time-series data is augmented using a rolling median (as described

in Section 3.2) of each dimension. We use two data sets for our

results: Section 4.2 is based on policies learned in Jan 2017 and

Section 4.3 is based on evaluation of policies learned in April 2017.

Remedial action logs: We show results for a frequently used

remedial action taken in the network, speci�cally rebooting an

eNodeB. In other words, we trained and evaluated our system for

learning policies that can recommend when an eNodeB can be

rebooted to �x a service issue. For the purpose of training, we

�ltered out all incidents during maintenance hours. Also �ltered

out were two additional types of reboots: (i) ones that were due

to so�ware upgrades, and (ii) ones that were not preceded by any

KPI degradation as there are many reboots that are automated and

have nothing to do with mitigating service issues. We only focus on

cases where the service impact (measured through the aggregate

KPI degradation score) is above a minimum threshold as the success

of our system depends on e�ectively detecting service issues with

appreciable KPI degradation.

Testing: Once the policies are learned, evaluation/testing is done
in a subsequent period (clearly non-overlapping period). Testing

is done periodically based on all measurement data collected over

the period (we do it once a day but it can be performed once every

few hours as well). �e testing steps for a measurement instance

corresponding to an eNodeB at a given time is as follows:

(1) Normalize the data using the data normalization steps described

in Section 3.2.

(2) Associate a policy group based on the so�ware version, con�g-

uration template and computed symptoms.

(3) For each policy learned for this group, compute the classi�-

cation probability p̂ of class-R given by (4). We output this

measurement instance as class-R if p̂ is more than a thresh-

old (obtained through 10-fold cross validation in the learning

phase). In standard approaches with ROCs from the K-fold

cross-validation [6], one compares p̂ to the threshold calculated

from the mean-ROC plot; however, due to the sensitivity to

false positives in our system, we also associate a con�dence to

the classi�cation based on the fraction of thresholds (there are

10 threshold once for each cross-validation) exceeded by p̂.
(4) For each remedial action from action logs, in the time leading

up to the action, �nd the prediction with maximum con�dence.

Table 1: Number of features used and average TPR (F PR < 0.005%)
for the best choice of hyper-parameters based on 10-fold cross-
validations. We use tptKPI, xaKPI, cdKPI to denote KPIs related to
throughput, connection access, and call drops respectively (rather
than the exact KPI names). �e operational environment tags are
anonymized for con�dentiality.

Operational Symptom No. Features TPR

Environment Iteration

(SW Vrsn./Conf.) KPIs

ST-1 xaKPI-2 0 26 34%

tptKPI-6 0 60 30%

1 74 20%

ST-3 cdKPI-1 0 54 80%

ST-5 tptKPI-5 and tptKPI-6 0 62 35%

xaKPI-2 0 22 36%

tptKPI-6 0 24 53%

1 35 23%

2 65 15%

cdKPI-1 0 84 29%

Figure 4: ROC curve for few cases in Table 1

In the following, we �rst present in Section 4.2 a validation of

the individual policies learned by AESOP, and then in Section 4.3

we present results demonstrating the practical usefulness of the

pool of policies learned.

4.2 Policy Validation
We �rst present cross-validation results to understand the e�ec-

tiveness of our key steps and model. We have three goals: �rst,

we wish to validate that our model outputs policies with good true

positive statistics in-spite of very-tight constraints on the false pos-

itive rate which is important for practical usefulness of the policies;

second, we wish to validate potential gains from boosting in Sec-

tion 3.4.3; third, we wish to validate whether the best choice of

model hyper-parameters provides a signi�cant reduction in the

number of counters which is important to make sense out of the

extracted features (by a domain expert). All results are based on

the 10-fold cross-validation results produced by �e best choice of

hyper-parameter obtained through a grid search.



In Table 1, we show the 10-fold cross-validation performance of

sample policies. In Figure 4 we show some of the ROC curves. We

make the following observations:

(1) In Figure 4, we show the ROC curves behind some of the poli-

cies in Table 1. �ough in most cases, the area under the

curve ranged from 0.9 − 0.98; however, choosing a classi�-

cation threshold to ensure very low false positive leads to a

true positive rate (TPR) in the range 15 − 80%. For our applica-
tion, even a true-positive rate of, say 30% for a learned policy, can
lead to signi�cant number of actions that can be predicted using
the policy. Note that the TPR/FPR of each policy is evaluated on

a subset of instances that match the operational environment

and symptom for that policy.

(2) We have observed that in some of the cases there is bene�t

to be had from boosting while for many other cases there are

no gains. For example, in Table 1, consider TPRs for opera-

tional environment ST-5 and symptom with tptKPI-6 (this is a

throughput related KPI). �e �rst three iterations of boosting

had a cross-validation TPR of 53, 23, 15% respectively. Since

the �nal policy is OR of the policies, the expected TPR of the

combined policy is 1 −
∏

k (1 − tprk ) = 0.69 where tprk is the

true positive rate of iteration-k . Similarly, for so�ware ver-

sion/con�g ST-1 and symptom tptKPI-5, two iterations of TPR

30% and 20% translates to an expected TPR of around 44%.

(3) Most of the policies have just a few tens of features reduced

from approximately 2200 dimensions (a�er feature augmen-

tation to include rolling time-windowed measurements). �e

two orders of magnitude reduction in dimensions turns out to

be very important in making the policies e�ective as well as

interpretable by a domain expert.

4.3 Policy Usefulness in Practice
From an operational perspective, policies are useful if (i) they de-

tect a substantial number of service issues that can be recovered

through appropriate remedial actions, and (ii) they keep the false

positives low. We next show how the policies we learn meet these

requirements based on some of the test results captured during a

two-week period.

In this section, instead of showing the e�ectiveness of individual

policies, we show results based on the collection of learned policies.

�e �nal recommendation is a reboot if any of the policies in the

collection recommends a reboot with high con�dence. In our results,

we select policies to be part of the collection if cross-validation

performance during training gives a true positive rate above a

minimum threshold (chosen as 25%).

In order to have meaningful TPR and FPR, we choose test candi-

dates as those measurement instances where there is a matching

operational environment and symptom for any policy in the col-

lection. Also, from our test candidates, we �lter out reboots that

were not e�ective as we are interested in detecting (i.e. predicting)

e�ective reboots. E�ectiveness of a reboot is based on comparing

aggregate primary KPI degradations in �xed length time windows

before and a�er each reboot. In the rest of this section, we simply

say reboot to mean e�ective reboot.

Prediction of remedial actions: Figure 5 depicts the predic-
tion con�dence of the candidate reboots from action logs. As we

Figure 5: Statistics of detection con�dence for e�ective reboots
among test-candidates.

(a)

(b)

Figure 6: (a) Time series of number of e�ective reboots detected by
reboot and performed by operations (b) Time-series showing break-
down of e�ective reboots detected by AESOP.

can see, our system detected (i.e. correctly predicted) around 40% of

these reboots with high con�dence (0.8 or above) in the time lead-

ing up to the eNodeB reboot. �is demonstrates AESOP’s potential

for automatically learning policies that can be used in automation

systems such as ECOMP[1] for achieving operational e�ciencies.

Comparison of reboots detected byAESOPwith those per-
formed by operations’ : Figure 6a compares number of reboots

detected by AESOP with those performed by operations. In Fig-

ure 6b, as a daily time-series, we provide breakdown of comparison

between predictions by AESOP and decision by Operations. �e

plot can be interpreted as follows:

• �e area P0 represents percentage of instances where neither

AESOP detected a reboot nor any reboot was performed by



operations among all instances where there was a symptom.

�is shows that, our system can e�ectively detect cases where

no reboot is required.

• �e area P1 represents percentage of instances where AESOP

did not detect a reboot with high con�dence but operation

carried out a reboot. �e gap could be a�ributed to the fact that

our models are tuned for very low false positive as a design

decision.

• �e area P2 represents percentage of instances where AESOP

detected reboot and a reboot was carried out by operations in

the subsequent 24 hrs.

• �e area P3 simply represents percentage of instances where

AESOP detected reboot but a reboot was not carried out in the

next 24 hrs.

5 RELATEDWORK
�ere is a a considerable amount of work on designing data driven

analytical tools to monitor and detect anomalies in networks [2,

9, 10, 18, 20], and also to detect service impact due to so�ware

upgrades [11, 12]. In the context of networks, there has also been

some work on developing probabilistic models [14] for root cause

analysis, designing root cause analytics platforms [19], and au-

tomation of system problem diagnosis [5, 21]. While all of these

and similar works develop data driven methodologies to aid the

operations personnel, our goal is to automate policy learning for

operations.

In recent years, the broad scope of designing data driven learn-

ing systems for network management and control has received

a�ention: [13] develops a system for automatically learning control

decisions for resource management in data centers, [3] proposes

a system for proactively predicting disk failures, [17] designs a

system for automatically mining syslogs to detect anomalies in

application program control-�ow, and [16] proposes a learning

based system for detecting and monitoring service issues. �e main

di�erence with our work is that we design a system that accounts

for some of the unique operational challenges in large networks by

fusing domain knowledge with machine learning.

6 CONCLUSIONS
In this paper we presented AESOP, a data driven system for auto-

matic policy learning for triggering remedial actions in networks.

To the best of our knowledge, this is the �rst work on automatic

policy learning for network operations that accounts for the chal-

lenges speci�c to networking in a systematic manner. While we

demonstrated the e�ectiveness of the policies learned, we wish to

emphasize that we are working on evolving our policy learning

framework to capture more complex symptoms and fault conditions

so as to have wider applicability of the policies. �e design princi-

ples of AESOP are applicable to any so�ware centric networking

and distributed Systems, including those which leverage virtual

network functions.
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