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ABSTRACT 
Modern communication networks are large, dynamic, complex, and 
increasingly use virtualized network infrastructure.  To deploy, 
maintain, and troubleshoot such networks, it is essential to 
understand how network elements – such as servers, switches, 
virtual machines, and virtual network functions – are connected to 
one another, and to be able to discover communication paths 
between them. For network maintenance applications such as 
troubleshooting and service quality management, it is also essential 
to understand how connections change over time, and be able to 
pose time-travel queries to retrieve information about past network 
states. With the industry-wide move to Software Defined Networks 
and Virtualized Network Functions (VNFs) [26][24], maintaining 
these inventory and topology databases becomes a critical issue. 

In this paper, we explore the database requirements for the 
management and troubleshooting of network services using VNF 
and SDN technologies.  This work was initiated in the context of 
Open source ECOMP, which has been now merged into ONAP 
[24], the new industry-standard for managing network automation.  
We develop a graph-based layered network model with layers 
representing increasing levels of specificity, from VNFs to physical 
hardware.  We then describe the kinds of queries required for 
activities such as operations management and troubleshooting. 

These considerations have led us to develop Nepal, a model-driven 
graph database system to represent and reason over network service 
topology and data flows within the network.  Nepal has several 
features making it particularly applicable for querying inventory: 
Nepal has a strongly-typed but flexible schema to support model-
driven networking; it makes graph paths a first-class object in its 
query system; it has sophisticated support for in-the-past queries; 
and it works as a layer over one or more underlying databases. 

We demonstrate the capabilities of Nepal by examples, discuss its 
model-driven query capabilities, and implementation details on 
Gremlin and Postgres. We illustrate how path queries can simplify 
the extraction of information from a dynamic inventory of a multi-
layer network and can be used for troubleshooting. 

1. Introduction 
AT&T’s Domain 2.0 program (D2) aims to leverage cloud 
technologies, software defined networks (SDN), and network 
virtualization to offer network services with significant levels of 
automation [24]. This effort involves a network management 
platform (ECOMP, now merged into ONAP) responsible for 
automated creation, management, troubleshooting, and 

maintenance of AT&Ts networks and services. Cloud technologies 
and SDN introduce unprecedented levels of control, dynamism, and 
complexity in managing networks. Maintaining and querying a 
network topology inventory is essential in software defined 
networking with virtualized network infrastructure, where the 
network control is directly programmable and the underlying 
infrastructure is virtualized and abstracted from network services 
and functions [20]. In particular, an inventory can facilitate the 
creation of SDN applications using modeling languages, such as 
Tosca and Yang, to enable model-driven networking [23].   

The components within cloud-based network can vary in their role 
from an abstract high-level network function such as a firewall to a 
concrete network element such as a physical network interface. 
Furthermore, network elements can belong to a complex 
classification hierarchy. The network database system must allow 
for the categorization and labeling of these elements so that 
network operators and management systems can query and update 
the network inventory at the proper level of abstraction - without 
requiring knowledge and manipulation of unnecessary network 
details.   

The communication channels along a topology of interconnected 
network components form the central constructs over which 
network management tasks are carried out, e.g. network service 
provisioning, configuration of network elements, auto scaling, and 
troubleshooting. Queries such as: “Can network elements A and B 
communicate?”, “What is the shortest path from element A to B to 
route data packets?”, “Which network services share the 
communication link between elements B and C?”, etc. are critical 
for such network management tasks. For programmable network 
management and tooling, it must be possible to easily construct 
these queries and execute them in an efficient manner.  

Another key requirement for troubleshooting a network is the 
ability to “look into the past”, and reason over the events and state 
of the network to fix a problem. Network operators often need to 
go back in time to the point at which network event occurred to 
troubleshoot a problem. Troubleshooting requires an understanding 
of the state of the network elements (including the routing tables, 
configuration parameters and alarms), their connections with other 
elements, and the exact paths along which the data packets and 
control information traveled in order to correlate and localize the 
problem at a specific instant of time in the past. Furthermore, these 
queries could be posed over a time interval in the past to understand 
how the network evolved over time - including the changes the 
network elements’ state and the topology of the network.  

Finally, most large-scale complex networks, such as the one 
managed by AT&T, include network information stored in 
different types of inventories. It may be impractical to assume that 
the complete network inventory and topology is stored in a single 
unified database. Fragmented sources of information limit the 
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ability to seamlessly reason over multiple network inventories for 
management of services deployed over different types of networks 
or geographical regions. Hence, the network query system must be 
flexible enough to operate over different data inventories storing 
different parts of the network.  

Current database systems are unable to support these features 
required for cloud-based virtual networks, as discussed in Section 
7. To utilize an inventory it is essential to be able to query the data 
and extract information about connections between nodes. This is 
not an easy task when the network is large and complicated [32]. 
Moreover, in typical graph query languages, queries are formulated 
by defining a graph pattern that should be matched to the database, 
while the goal of most network inventory queries is to find paths in 
the graph, often without knowing the length of these paths.  
Existing graph query languages are also not designed for time-
travel queries where the temporal aspect is taken into account, so 
that a query could refer to a time in the past.  

Nepal (NEtwork PAth query Language) is a graph database system 
for maintaining an inventory and topology of complex, dynamic 
cloud-based networks to support automated network management 
applications. Nepal incorporates four key novel features:  

1) Schema with multiple abstraction mechanisms:  Nepal takes 
advantage of entity (and relationship) generalization at query time, 
enabling access to complex inventory data in a simple manner, 
without requiring the user to know the network details beyond what 
is necessary.   

2) Paths as first class citizens of the language: Network queries are 
posed over a virtual set of paths, and they returns paths. Thus, the 
Nepal query language is closed under composition, enabling 
complex path queries. Achieving this property in other common 
graph languages is difficult because they either return subgraphs or 
sets of tuples. 

3) Time travel queries: Nepal is a temporal database labeling each 
node and edge with timestamp intervals. This labeling allows 
network queries to be posed over past temporal snapshots or time 
intervals.  

4) Retargetable architecture: Nepal queries can be translated to 
target different database systems such as Gremlin or SQL. This 
feature allows Nepal to be used for reasoning over fragmented 
network data stored in different types systems.  

2. Automated Management of Cloud-based 
Virtualized Network Infrastructure 
The ability to create network services by stitching together centrally 
controlled virtualized networks functions on cloud platforms 
enables the management of network functions in an automated 
manner. A&AT took the initiative to build an automated network 
management platform called ECOMP for managing cloud-based 
network services, and used it as the basis for ONAP. A key 
requirement for this platform is a graph-based network database 
management system for maintaining network inventory topology 
and network states for network service orchestration, 
troubleshooting, and other network management tasks.  

2.1 Cloud-based Networks 
Recent advances in network function virtualization (NFV), 
combined with software-defined networking (SDN), have enabled 
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network service providers to deploy, manage and troubleshoot 
network services with increasing levels of automation.  

NFV allows primary network functions such as switches, routers, 
gateways, firewalls, and also complex network functions, such as 
the evolved packet core1 (EPC) in mobility networks, to be 
virtualized and implemented as a collection of virtual machines 
(VMs) deployed over cloud infrastructure. SDN technologies allow 
remote configuration of these virtualized network functions via 
standard protocols.  

When a network function is moved from a physical implementation 
to a virtualized one, it often results in a substantial increase in 
complexity of the function. The physical to virtual network 
function transition is seldom a one to one map. In most cases, what 
was earlier a single physical box now gets replaced by tens of 
interconnected VMs running over a physical network fabric within 
a data center. The result of such virtualization of network functions 
is called virtualized network function (or VNF).  

 
Figure 1: A simplified model of virtualized cloud-based 
network graph topology 

A VNF typically consists of a number of subcomponents called 
virtual function components (VFCs). Each VFC can be viewed as 
an indivisible subcomponent of the VNF which runs on a single 
VM. The VFCs, each running within a VM, collectively implement 
the VNF by communicating over the virtual networks defined 
within the cloud. A virtual network provides full connectivity 
among all VMs that are connected to it, and also provides isolation 
from other VMs and virtual networks in the cloud. Virtual routers 
enable connectivity among virtual networks. VMs, virtual networks 
and virtual routers, together constitute the virtual infrastructure 
within which VNFs operate. The virtual connectivity infrastructure 
is also called the overlay network.  

The virtualized infrastructure is instantiated on a physical 
infrastructure fabric. This includes physical servers, physical 
switches and routers, which provide the underlying physical 
connectivity for the virtual machines to communicate with each 
other. The network formed by the physical infrastructure is also 
called the underlay network.  

2.2 The ONAP Platform  
The complexity introduced by virtualization of network functions 
is a tradeoff for automation in management of these functions 
including deployment, configuration, auto-scaling, and 
troubleshooting. This enables AT&T to deploy and manage 
network services in an automated manner, including the resources 
(i.e. network, cloud and infrastructure) which comprise that service. 
Towards this goal, A&AT initiated the development of a network 



management platform called ONAP, for design, creation and life-
cycle management of virtualized network services. 

The ONAP platform consists of five key subsystems: 

1. Service Design and Creation (SDC):  

This component is a subsystem responsible for design and 
definition of models of AT&T services and resources which 
comprise those services. ONAP follows a model driven approach 
of services and resources described using e.g. TOSCA, which 
provides a standard vocabulary for different ONAP components, 
and enables re-usability of ONAP models.  

2. Policy:  

Policies are statements of intent, expressing what is to be achieved 
by a system under a given context (or a set of conditions). ONAP 
includes a dedicated component responsible for Policy. Policies are 
expressed in policy language such as Drools2 or XACML3, and 
control the network elements for responding to failures, auto-
scaling, and so on. 

3. Master Service Orchestrator (MSO):  

The MSO’s primary function is the automation of service 
instantiation based on the templates and service definitions 
provided by ASDC. The MSO executes well-defined processes for 
each of these tasks, which are defined via formal, machine readable 
workflows or configuration templates, by collaborating with 
various controllers for network, infrastructure and applications.  

4. Active and Available Inventory (A&AI): 

A&AI keeps an inventory of virtualized resources, services, and 
customer subscriptions – including all artifacts generated by the 
MSO.  In addition, A&AI stores the relationships between these 
entities, enabling navigation queries.  Local resource orchestrators 
typically maintain their own inventories. 

5. Data Collection Analytics and Events (DCAE):  

The DCAE platform manages event information, including key 
performance indicators, events, usage and telemetry, etc. collected 
from the dynamic virtualized infrastructure. The information is 
subsequently fed to a collection of analytic functions performing 
both offline and real time analysis of the data to determine faults 
and alarm conditions within AT&T network services and 
infrastructure.  

2.2.1 ONAP and Nepal 
We are developing Nepal to support the kind of complex queries 
required for advanced network management applications.  Nepal is 
designed to integrate data from A&AI and other inventory 
databases to create a topology, maintain a historical graph over the 
topology, and enable the simple and efficient expression of path 
queries over these graphs. 

2.3 Need for Path Calculations in Cloud-
based Networks 
Understanding and reasoning over the relationships among the 
network elements is a key requirement for orchestration, 
troubleshooting, analysis and other management tasks within a 
network.  The complexity of cloud-based networks makes this 
requirement more complex and more critical. To cut through this 
complexity, we developed information organizing principles. In 
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this section we introduce a layered network model to capture the 
topology for virtualized network as shown in Figure 2.  

2.3.1 Layered Network Model 
A network created only with physical elements consists of 
connections among various network elements such as compute 
servers, switches and routers leads to a flat topology of 
interconnected elements. It is over this flat topology that data 
packets are routed and communication channels are established. 

A virtual, cloud-based network introduces a new dimension to this 
topology. The end points of communications are no longer physical 
servers but VMs which run over the physical servers. These VMs 
communicate via virtual networks and virtual routers, which are 
virtual constructs running over a physical infrastructure.  As 
explained earlier in Section 2.1, the physical network elements only 
provide a communication underlay fabric over which a 
communication fabric of virtual network infrastructure is created. 
Hence a new virtualization layer needs to be introduced in the 
network topology.  

In Figure 2, the bottom two layers (i.e. the Physical Layer and 
Virtualization layer) represent the physical underlay 
communication network and the virtual overlay communication 
network. Each of these layers have two types of edges: vertical and 
horizontal. Horizontal edges form the paths of communication 
within a layer, e.g. VM to virtual router, server to switch, and so 
on. The vertical edges capture HostedOn relationships, e.g. a VM 
executes on a server.   

 
Figure 2: Layered network model 

The top two layers are service design layers. A network service 
consists of a set of interconnected VNFs. The VNFs are stitched 
together to form an end-to-end communication channels for the 
network service. This service topology of interconnected VNFs is 
represented by the Service layer in our network model. End-to-end 
high-level data flows and control flows for the network service are 
described and represented at this layer.  

As explained in Section 2.1, each VNF is divided into a number of 
subcomponent VFCs which comprise the Logical Layer.  Vertical 
edges between the Service and Logical layers indicate the VFCs 
that comprise a VNF.  Each VFC is an indivisible virtual network 
component which runs within a single container or VM.  Vertical 
edges from the Logical to the Virtual layer capture this mapping. 

The upper two layers (Service and Logical) capture the service 
components and their relationships. End-to-end service-level data 

3 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
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and control flows can be defined over these two layers during 
design time. The bottom two layers (i.e. Virtualization layer and 
Physical layer) are defined during service deployment. It is only 
after the service is instantiated over a virtual network fabric that 
elements at the Virtualization layers come into being and are 
mapped to the Service and Logical layers 

Together, the layered network model allows for separation of 
network relationships at various levels of abstraction. Such a 
separation provides several advantages: network services can be 
queried at different levels of abstraction and granularity, we can 
reason about the relationship between abstract and physical 
elements, and we can map service paths at an abstract (e.g., 
Logical) layer to service paths at a more concrete (e.g., Physical) 
layer. 

2.3.2 Path Calculations within a Layered Network 
Topology 
A primary reason for storing network information as a topology is 
to efficiently and easily reason over how control and data packets 
move through the different elements of a network topology. Such 
reasoning is critical for various network management tasks 
including troubleshooting, optimization, placement, etc. This can 
be achieved via exploring the network topology not as subsets of a 
connected graph, but rather via network paths explored along the 
topology of the network. For this is the reason, Nepal treats paths 
as the first-class citizens of the query language.  

Given an inventory of a complex network expressed as a network 
topology, the following are the types of queries that need to be 
processed for network management tasks.  

Calculating routes – A network configuration service might want 
to know all possible paths between two VMs in order to determine 
the most efficient one to be configured. Such configuration may 
require the paths to pass through a set of routers (possibly in a given 
order) as a service constraint. A security management system might 
want to know if any path exists between two network elements 
which bypass the firewalls. Troubleshooting services often requires 
one to know if data flows for a given set of customers experiencing 
service quality issues share a common set of elements, which may 
be responsible for the issue.  

Calculating induced paths – In a virtualized network system, 
control and data flows are often expressed or known at the service 
design layers; understanding those paths at the virtualization or 
physical layers is important for network management tasks. 
Similarly, a network path at the virtualization layer via virtual 
network elements has an induced physical equivalent path via 
physical elements. Determining an induced path for a given 
network path at a different layer includes calculating the 
corresponding network elements by traversing the layers vertically, 
and then calculating the induced path at that layer. For example, if 
a service path includes VNFs 1, 2, and 3, determining the 
corresponding induced path at the physical layer, will require to 
calculate the physical servers over which the VNFs run, and the 
paths between those physical servers. 

Calculating shared fate -- When a network element fails, it affects 
network services which depend on it. For example, if a switch fails, 
all the network paths passing through that switch will fail. 
Similarly, if a physical server fails, all VMs running on that server 
fail, and subsequently the VNFs which those VMs implement. To 
determine all the VMs, and VNFs affected by the failure of a 
physical server, one computes the vertical paths from that server to 
all the corresponding VNFs via the VMs and VFCs along the upper 
layers in the layered model. 

Calculating service dependencies on physical infrastructure – To 
determine the footprint of a VNF at the Virtualization layer (i.e. all 
VMs implementing that VNF), and Physical layer (i.e. all physical 
servers on which those VMs run) one calculates the paths along the 
vertical connections. Such calculations are important for 
management of that VNFs virtual and physical resources.  

History-based troubleshooting – Understanding the network 
behavior at some point in the past is critical for troubleshooting. 
What was the network path taken at the time of the failure? What 
was the physical and virtual footprint of a VNF, and how did it 
evolve over time? Between timestamps t1 and t2, which network 
paths flowed through a given network element?  

These are some of the questions for which answers are needed by 
network operators in order to troubleshoot a problem. Hence, the 
ability to query a network topology graph over various temporal 
granularities is important in network management. In the next 
section, we describe the Nepal system which is designed for 
expressing these queries as path patterns over a graph-based 
network topology.  

3. The Nepal System 
While the A&AI component of ONAP (Section 2) stores an 
inventory, it was not designed to provide the capabilities needed to 
service path calculations: model-driven entities and relationships 
with multiple abstractions, a path-oriented query language, time 
travel, and a retargetable architecture.  We developed Nepal to 
address these needs and provide a foundation for trouble shooting, 
service quality management, and operations management within 
ONAP. 

The Nepal system is designed to provide the capabilities needed for 
service path calculations: model-driven entities and relationships 
with multiple abstractions, a path-oriented query language, time 
travel, and a retargetable architecture (the A&AI component of 
ONAP, Section 2, stores an inventory - one of several used by 
Nepal). Nepal supports these features and provides a foundation for 
trouble shooting, service quality management, and operations 
management within ONAP. 

In this section, we describe the Nepal query language and system.  
We start with a discussion of the Nepal data model. 

3.1 Architecture 
We designed Nepal to be a shim layer between network 
applications and one or more database systems.  Nepal can be 
thought of as having three components, a schema system, a query 
translator, and a graph data management system. 

The schema system manages the Nepal schemas (described in 
Section 3.2) for use by the query translator and the graph data 
management system.  This Nepal component provides services for 
translating data between input data representations, native Nepal 
representations, and target system (relational, property graph) data 
representations. 

The query translator takes as input a Nepal query and one or more 
Nepal schemas and generates a Python program that issues queries 
to one or more target databases.  The code generation system 
attempts to execute as much of the query in the target database as 
possible, primarily performing query sequence management.  
However the Python code will perform processing not available in 
the target database(s), e.g. execute functions not present in the 
target DBMS, and shipping partial results from one target database 
component to another. 

We originally intended for Nepal to execute on top of existing 
graph databases (e.g. A&AI, Section 2.2).  However the need for 



temporal graph management and interaction with multiple data 
sources (cloud management system, legacy systems, and so on) led 
us to develop a graph database management layer.  This layer 
translates inserts, deletes, and updates into the collections of inserts, 
deletes, and updates in the target (relational, property graph) 
database.  Several data sources provide periodic snapshots of their 
contents rather than update streams, so the graph database 
management layer also provides an update-by-snapshot service. 

3.2 Data Model Basics 
Nepal is a graph based database system, which is a natural fit for 
capturing the topology of a communication network. Unlike most 
graph database languages (see Section 7Error! Reference source 
not found.), which use the property graph model, all nodes and 
edges in Nepal have a strongly typed schema – an appropriate 
choice for an automation-friendly network inventory database. In 
this section we describe some Nepal modeling concepts necessary 
for understanding the Nepal language. 

The nodes in a Nepal graph represent different types of network 
entities, and the edges capture various types of relationships among 
these entities. Entities in a cloud-based virtualized network may 
include physical servers (or hosts), switches, routers, virtual 
machines (VMs), virtual network functions (VNFs), virtual 
function components (VFCs), virtual routers, and so on.  

The entities can have various relationships: HostedOn (e.g. a VNF 
is HostedOn a VFC, which is HostedOn a VM, etc.), ConnectedTo 
(a server is ConnectedTo a switch, which is ConnectedTo a Router, 
etc.) and so on.  

These entities and relationships must be communicated among the 
many organizations which query and update the inventory: the 
master service orchestrator, application and resource orchestrators, 
and network engineers performing maintenance and 
troubleshooting, and so on.  The entities and relationships have 
specific collections of fields which the application logic of the 
various customers of the inventory graph relies on.  We have found 
that using a traditional schema-free graph database based on the 
property graph model requires extensive application-side logic to 
ensure automation-friendly database schemas and constraints. 

The entities and relationships stored in Nepal have complex 
relationships to each other.  For example, there are many kinds of 
VNFs (DNS, firewall, etc.) and many kinds of VFCs (proxies, web 
servers), many kinds of virtualization containers (virtual machines, 
Docker containers), and so on.  Forcing this complexity upon the 
query writer would be overwhelming, so Nepal uses an abstraction 
mechanism which we call strongly-typed concepts to generalize 
disparate nodes and edges.  In this paper, we restrict our discussion 
to node and edge class hierarchies. 

All nodes and edges in a Nepal schema are of a specific class, and 
are part of a single-rooted class hierarchy.  The base class defines 
properties of every Nepal database entry, and has two subclasses: 
Node and Edge, which are the root classes of all nodes and edges, 
respectively.  The subclass of a parent class has all of the fields of 
the parent class, and optionally additional fields.  With this 
mechanism, one can define a generic network entity (such as a 
VNF), with subclasses that add additional information as needed: 
VNF:DNS, VNF:Firewall, and so on. 

Edges also have a class hierarchy.  While this feature is unusual for 
graph databases, we were influenced by the OASIS TOSCA4 
standard for defining the topology of cloud-based services.  ONAP 
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uses TOSCA as its standard modeling language, so network 
topology sources are described using TOSCA and therefore 
compatibility is needed. However, edge hierarchies are a 
convenient modeling tool.  So, for example, there can be a Vertical 
class derived from Edge, and from which all other Vertical edges 
are derived: Vertical:ComposedOf, Vertical:HostedOn:OnVM, 
Vertical:HostedOn:OnServer, and so on. 

As with the Node hierarchy, the Edge hierarchy allows the system 
modeler to add relevant information as needed.  For example, there 
might be a base ConnectedTo edge that describes communication 
connections.  However, when a server is ConnectedTo a switch, we 
need to describe the server and switch interfaces of the connection.  
When a VM is ConnectedTo a network, we need to describe the IP 
address that the VM exposes to the network.  So a 
ConnectedTo:ServerSwitch edge extends the ConnectedTo edge by 
adding fields ServerInterface and SwitchInterface while 
ConnectedTo:VmRouter extends ConnectedTo by adding field 
IpAddress. 

The Nepal Schema language is derived from the Tosca schema 
language (data_types, node_types, capability_types), allowing 
automatic translation from Tosca to a Nepal schema.  Tosca 
contains a graph schema language – edges are “capability types” 
and node types specify the class and number of the capabilities 
(edges) that can enter or leave the node.  Nepal uses this system to 
define graph schemas, a simple example of which is shown in 
Figure 3. 

 
Figure 3.  Simple network underlay/overlay graph schema. 

The dashed lines indicate parent-child inheritance, while the solid 
lines among the nodes indicate allowed edges.  Note that 
composed_of and hosted_on are both derived from Vertical, so that 
one can traverse from a VNF to its physical servers by following 
Vertical edges.  However one cannot directly link a VNF to a 
physical_server as no such edge is permitted by the graph schema. 

3.2.1 Structured Data 
The entities in a network graph typically contain a significant 
amount of structured data.  For example, a Router might contain a 
routing table, which is a list of routingTableEntries entries of the 
form: 

(IPAddress address, Int mask, String interface)  

Then a routing table in a Router node can be expressed as 



List[routingTableEntry] routingTable 

The Nepal schema language uses the extended entities described by 
the node_types and data_types in TOSCA (the standard ONAP 
modeling language).  A brief description of the schema system is 
that 

• A data_types section describes the composite data types 
available to the nodes and edges in the schema. 

• A data type can have fields that are of other defined data 
types.  The resulting composition DAG must be acyclic. 

• A field can be a container type, containing fields of a 
particular type.  The available containers are list, set, and 
map. 

• Nodes, edges, and data types all support inheritance.  
Inheritance implies the addition of fields and constraints 
to the parent class, and allows substitution of a subclass 
for a parent class. 

3.3 Language Syntax and Semantics 
Nepal queries are centered on pathways, which are first-class 
entities (the word “path” is overloaded in the context of 
networking).  A pathway is an alternating sequence of nodes and 
edges which always start and end with a node: n1, e1, …, ek-1, nk.  A 
single node n1 is a pathway, and a single edge has implicit nodes at 
its endpoints: e1 is shorthand for n, e1, n’. 

Pathways are specified using regular pathway expressions, or 
RPEs.  The atoms of an RPE specify the properties of the nodes or 
edges that satisfy the atom.  An atom is specified by a class name, 
and any additional constraints on the fields of the records of that 
class.  For example, all VMs with status “Green” are specified by 
the atom 

VM(status=‘Green’) 

This atom is satisfied by all records of class VM, or of a (possibly 
transitive) subclass of VM.  Atoms are strongly typed: all fields 
referenced in the atom predicate must be fields of the indicated 
class.   

The name portion of an atom (e.g., VM) refers to a strongly typed 
concept as defined in a Nepal schema (if the name of the subclass 
is unique, the inheritance chain can be discarded).  The schema 
might have two different kinds of VMs, VM:VMWare and 
VM:OnMetal.  The atom VM(…’) refers to both VMWare nodes 
and OnMetal nodes, but only the VM fields can be referenced.  
Similarly VM might be subclassed from Container, with sibling 
Container:Docker.  The atom VM(…) refers only to those 
Containers that are subclassed into VM, and does not refer to any 
Docker container. 

The subclassing system determines whether an atom is a node or an 
edge.  VM is a node because it is (transitively) subclassed from 
Node, while a HostedOn atom is an edge because it is (transitively) 
subclassed from Edge. 

 A regular pathway expression is defined recursively, in a manner 
similar to conventional regular expressions. 

• A node or edge atom is an RPE. 
• If r1 and r2 are RPEs, then the concatenation r1->r2 is 

an RPE. 
• If r1 and r2 are RPEs, then the disjunction (r1|r2) is an 

RPE. 
• If r is an RPE and i ≤ j are positive integers, then the 

repetition [r]{ i,j} is an RPE. 

We have already defined how pathways satisfy atoms, so we 
proceed to define pathway satisfaction of the other RPE 

constructions.  Let p be a pathway n1,e1, …ei, ni+1, …, ek-1, nk.  Then 
p matches r1->r2 if one of the following four conditions are 
satisfied: 

• n1,e1, …ei, matches r1 and ni+1, …, ek-1, nk matches r2. 
• n1,e1, …ni, matches r1 and ei, …, ek-1, nk matches r2. 
• n1,e1, …ni, matches r1 and ni+1 , …, ek-1, nk matches r2. 
• n1,e1, …ei, matches r1 and ei+1, …, ek-1, nk matches r2. 

This definition of catenation allows us to easily specify pathways 
via mixtures of edge and node traversals.  This will be illustrated in 
the first two examples of Section 3.4, in which pathways are 
specified using RPEs that mix Node and Edge atoms. 

Pathway p satisfies the disjunction (r1|r2) if it satisfies r1 or r2 (or 
both).  Pathway p satisfies [r]{ i,j} if it satisfies r->r->…->r where 
the repetition occurs between i and j times, inclusive. 

In comparison to a Regular Path Query (RPQ) [2][34], Nepal RPEs 
refer to both nodes and edge, with predicates on their fields.  PGQL 
[25] allows expressions over both nodes and edges, but treats them 
separately.  Nepal treats nodes and edges symmetrically, which can 
greatly simplify complex expressions. 

In Nepal we make several restrictions on the RPEs that can be used 
to constrain pathways. 

• All RPEs must be length-limited.  This can be done either 
in the RPE (finite upper bounds on the repetition blocks) 
or with a constraint on the maximum length of the 
pathway. 

• All RPEs must have at least one anchor – an atom that 
has a small number of records that satisfy it.  For 
example, VM()  is (probably) not an anchor, but 
VM(id=55)  is.  The meaning of “small” depends on 
available system resources.  In join queries, an anchor 
can be “imported” from a joined path. 

Anchored, length-limited RPEs allow Nepal to efficiently find 
pathways in a large graph database.  The requirement that the query 
planner be able to find an anchor causes our implementation to 
reject RPEs that involve only repetition blocks with i=0.  For 
example, 

[VNF()]{0,4}->[Vertical()]{0,4} 

does not have an anchor because the empty path satisfies the RPE.  
These RPEs are not common and are likely malformed. However 
RPE transformations can be applied to create anchored RPEs, with 
the empty path added for completion. 

3.4 Language Features with Examples 
A Nepal query has the form 

Retrieve  <list of pathway variables> 
From <list of <source, variable> pairs> 
Where <constraints on the pathway variables> 

The source is an unmaterialized view of pathways in a graph 
database, and the view PATHS is the set of all pathways.  
Additional views can be defined, but we do not explore this aspect 
of Nepal in this paper.  Each pathway variable must have a 
MATCHES predicate (unless one is implicit in the pathway view 
source). 

The Nepal query language syntax is an SQL-like syntax.  A 
significant difference between SQL and Nepal is that while SQL 
range variables are collections of records, Nepal range variables are 
collections of pathways. 



For our first example, suppose a network engineer needs to replace 
the server with id 232425, and wants to determine all VNFs that 
will be affected.  If the network engineer knows that all VNFs are 
implemented through a collection of VFCs, and all VFCs are hosted 
on VMs, which are executed on hosts, then the network engineer 
can execute the following query: 

Retrieve P From PATHS P WHERE P MATCHES  
VNF()->VFC()->VM()->Host(id=23245) 

The hierarchical nature of the Nepal schema insulates the network 
engineer from many details: the exact type of the VNF, VFC, VM 
and Host nodes.  However, the exact sequence of implementation 
must be known – perhaps a VFC is not virtualized and runs directly 
on a host.  If all implementation edges are subclassed (directly or 
transitively) from Vertical, a simpler and more generic query can 
be written: 

Retrieve P From PATHS P WHERE P MATCHES  
VNF()->[Vertical()]{1,6}->Host(id=23245) 

Join queries can be expressed with the use of pathway functions.  
The most basic functions are source(P) and target(P), which return 
the source and target nodes of P, respectively.  The class of 
source(P) / target(P) is the least common ancestor of all classes that 
an analysis of P’s MATCHES expression indicates can be the 
source / target of P.  For example, the following (simplified) query 
finds the physical communication path between the host that 
implements the VNF with id 123 and the VNF with id 234: 

Retrieve Phys 
From PATHS D1, PATHS D2, PATHS Phys  
Where  
  D1 MATCHES VNF(id=123)->Vertical(){1,6}->Host() 
  And D2 MATCHES VNF(id=234)->Vertical(){1,6}-
>Host() 
  And Phys MATCHES ConnectsTo(){1,8} 
  And source(Phys)=target(D1)  
  And target(Phys)=target(D2) 

While range variable Phys does not have explicit anchors, they are 
provided by the joins against the anchored range variables D1 and 
D2.   

Additional functionality is provided by subqueries.  For example, 
the following query returns all VMs that do not host a VFC or VNF 

Retrieve V From PATHS V 
Where V MATCHES VM() 
And NOT EXISTS( 
    Retrieve P from PATHS P 
    Where P MATCHES  
      (VNF()|VFC())->[HostedOn(){1,5}]->VM() 
      And target(V) = target(P) 
) 

While many applications naturally consume pathways, other 
applications are best served with processed versions of the paths.  
Since the core Nepal system processes pathways, the result 
processing layer operates with a different algebra.  The result 
processing layer makes use of well-known functions, for example 
source() and target().  So for example, we can transform the query 
that finds VM() pathways of VMs that do not host a VNF or a VFC 
into one which returns the names and ids of these VMs by replacing 

Retrieve V From PATHS V 
With 

Select source(V).name, source(V).id From PATHS V 

By changing the keyword Retrieve with the keyword Select, we 
indicate that post processing is to be performed on the returned 
pathways.  A full discussion of the Select clause is beyond the scope 
of this paper. 

4. Temporal Graph Queries 
Network inventory databases are often used to support complex 
network management applications such as troubleshooting and 
service quality management.  These applications need access to in-
the-past states of the graph.  For example, to diagnose an increase 
in dropped calls starting at 10:00 am, the network engineer needs 
to consult the state of the network at 10:00 am, not the current, e.g. 
1:00 pm, state of the network. 

A temporal extension to Nepal (discussed in Section 5) stores nodes 
and edges with their transaction time [31] by keeping a time range 
variable which indicates the system time when the database 
processed inserts, updates, and deletes.  This temporal extension 
allows two types of temporal queries: time point queries, which 
executes at a particular point in time, and time-range queries which 
return results over a time interval.   

The syntax for a time point query adds a time point either to the 
query as a whole (using the At  keyword), or to the individual range 
variables.  For example, the VNFs with components that are hosted 
on server 23245 at 10:00 am can be retrieved by the following 
query: 

AT ‘2017-02-15 10:00:00’  
Select source(P) From PATHS P 
Where P MATCHES  

VNF()->[HostedOn()]{1,6}->Host(id=23245) 

The set of VNFs which have components hosted on server 23245 
at 10:00 am and server 34356 at 11:00 am can be retrieved using 
the query 

Select source(P)  
From PATHS P(@‘2017-02-15 10:00’), 
           Q(@‘2017-02-15 11:00’),   
Where P MATCHES  

VNF()->[HostedOn()]{1,6}->Host(id=23245) 
And Q MATCHES 

VNF()->[HostedOn()]{1,6}->Host(id=34356) 
And source(P) = source(Q) 

A time-range query specifies a time range for the query, and returns 
all pathways that satisfy the query at some point during that time 
range, along with the time range that the pathway can be asserted 
to exist in the database.   

Let us revisit the example of finding VNFs with a component 
executing on host 23245, but between 9:00 am and 11:00 am. 

AT ‘2017-02-15 9:00’ : ‘2017-01-15 11:00’ 
Select source(P)From PATHS P 
Where P MATCHES  

VNF()->[HostedOn()]{1,6}->Host(id=23245) 

Every pathway returned by this query has a time range during 
which it can be asserted in the database.  Furthermore, this range is 
the maximal such range.  For example, this query might return 

 result1:{ times: [‘2017-02-05 06:30’, ‘2017-02-15 09:45’], 
   path: [n1,…,nk] },  
  result2:{ times: [‘2017-02-15 09:15’, ], 
   path: [n’1,…,n'k’] },  

So the pathway of result1 is asserted to have started at 6:30 am and 
ended at 9:45 am, while the pathway of result2 starts at 9:15 and 
still exists.  Since these are maximal time ranges, we know that 
some change occurred in the graph to invalidate the pathway of 
result1. 

In the case of a join query, the semantics of specifying the time 
range of using AT to associate a time range with a query vs. 
associating time ranges with each pathway variable are subtly 
different, even when all of the time ranges are the same.  When 



using AT, all results must coexist during the associated time range, 
which is the maximal time range when all of the pathways co-
existed.  For example: 

 result1:{ times: [‘2017-02-15 09:15’, ], 
   P: { path: [n1,…,nk]}, 
   Q: { path: [n1,…,nk]} 
 }, … 

If each range variable has its own time range, then there is no 
implicit temporal relationship between the range variables (explicit 
relationships can be specified in the Where clause), and each range 
variable has its own maximal time range in the output: 

 result1:{  
 P: { times: [‘2017-02-15 10:15’, ], path: [n1,…,nk]}, 
 Q: { times: [‘2017-02-15 08:00’, ‘2017-02-15 09:55’], 

 path: [n1,…,nk]} 
 }, … 

In a previous work [18], we proposed highly targeted temporal 
aggregation queries for network engineers: 

• First Time When Exists / Last Time When Exists : return 
the first time / last time when a pathway that satisfies the 
query can be found. 

• When Exists : return the time intervals during which a 
satisfying pathway can be found. 

These specialized queries can clearly be answered using the results 
of a time range query, though optimized evaluation plans might be 
possible.  Another targeted query is the path evolution query, which 
tracks the changes of the field values in a specific pathway (i.e. with 
specific node and edge ids).  Path evolution queries find use in 
visualization applications, in which a specific path returned by a 
query can be chosen and explored further.  Path evolution queries 
are clearly a special case of the time range query. 

5. Implementation 
We have developed an implementation of Nepal for use in 
advanced applications in ONAP [24] such as troubleshooting and 
service quality management.  In its current status, we have 
implemented all of the features described in this paper, with the 
exceptions which are still under development: 

• subqueries 
• Full query access to structured data (query access to non-

atomic types in a container, e.g. list, set, map, is not yet 
supported) 

We have implemented the Nepal query system as a retargetable 
query translator.  Currently we can translate Nepal queries into 
either Gremlin or SQL (currently PostgreSQL).  The ability to 
generate code for multiple platforms gives us the ability to use 
Nepal as a data integration platform, as paths from different data 
sources with different underlying query languages can be joined 
together. 

5.1 RPE Evaluation 
Nepal first transforms an RPE into a normalized form consisting of 
four types of blocks: 

• Atoms (specific node or edge predicates), e.g. 
VM(status=’green’) 

• Sequence(R1,…,Rn), representing (R1)->(R2)->…-
>(Rn), where each Ri is an RPE 

• Alternation(R1, …, Rn) representing (R1)|…|(Rn), 
where each Ri is an RPE 

• Repetition(R1,n,m) representing [R1]{n,m}, where R is 
an RPE 

Nepal then performs anchor selection by finding every possible 
anchor in the RPE, evaluating the cost of the anchor, and selecting 
the lowest-cost one.  In the presence of alternation blocks, an 
anchor is not necessarily a single atom, but rather a collection of 
atoms that “splits” the RPE.  Consider, for example, 

VNF()->[HostedOn()]{1-3}-> 
(VM(id=55)|Docker(id=66))->HostedOn{1,2}->Host() 

One possible anchor that splits the RPE is in the alternation block 
(VM(id=55)|Docker(id=66))  

which contains the two atoms of the candidate anchor VM(id=55) 
and Docker(id=66).  Since these are highly specific atoms, the pair 
is likely to be selected as the anchor. 

The algorithm for finding anchors applies the following rules: 

• Atom: select and cost the atom as an anchor. 
• Sequence: select and cost each Ri in the sequence block. 
• Alternation: Collect the set of anchors from each of the 

Ri.  The collection of possible anchors is the cross-
product of the n anchor sets from each of the Ri. 

• Repetition: Convert Repetition(R1,n,m) into 
Sequence(R1,Repetition(R1,n-1,m-1)) and return the 
anchor set from R1. 

The costing of an anchor is currently performed by estimating the 
cardinality of the anchor (number of nodes/edges).  Database 
statistics are used if available; otherwise schema hints are used.   

Anchor finding through nested alternation blocks can result in an 
exponential blowup in the number of possible anchors.  The current 
implementation avoids this problem by costing the anchor sets 
when an Alternation block is encountered, and returning the union 
of the best anchor from each alternate Ri. 

The normalized RPE and the selected best anchor are then 
converted into a collection of database operators with a conversion 
technique based on implementing a nondeterministic finite 
automate.  The basic operators are Select, Extend and Union.  
Select operators evaluate the anchor atom(s).  Extend operators 
evaluate the non-anchor atoms.  Union operators collect results 
where multiple paths are possible (Alternation and Repetition) – 
replacing epsilon transitions.   

The Extend operators can follow edges either forwards or 
backwards.  For example, one possible plan for evaluating the 
example RPE is: 

• Compute VM(id=55)|Docker(id=66)  
• Extend forwards by ))->HostedOn{1,2}->Host()  
• Extend backwards by VNF()->[HostedOn()]{1-3}  

A MATCHES operator returns a 1-ary table of paths, and join 
operator returns n-ary table of paths.  A full discussion of join 
processing and optimization is beyond the scope of this paper. 

5.2 Code Generation 
As described in Section 3.1, the code generation system creates 
queries against a target database, with Python code to perform 
query sequencing and manage data transfers.  The details of the 
transformation and code generation depend on the target database.   

For Gremlin, Select and Extend operators are send to the DBMS 
and the results are collected by the Python management code.  We 
have implemented channels for our Python framework which 
collect results from one or more Gremlin queries and supplies them 



to one or more Gremlin queries.  Thus, the Union operators are 
implemented by channels. 

To accelerate the evaluation of Nepal queries against a Gremlin 
database, we have implemented several extended operators.  For 
example, we have an ExtendBlock operator for Repetition 
operators.  This extended operator improves efficiency by keeping 
the data in the Gremlin database for multiple operators (avoiding 
data transfer overheads), and performing loop unrolling.  The RPE 
payload R in the ExtendBlock operator is limited – it must be a 
sequence of atoms or alternations of atoms.  The query planner 
module can recognize this pattern and replace a collection of 
Extend operators with an ExtendBlock operator. 

The Postgres implementation of Nepal uses one table for each 
distinct Node and Edge class (including Node and Edge), as well as 
a table to ensure that unique identifiers are indeed unique.  We 
make use of the Postgres INHERITS keyword to implement class 
inheritance.  So for example, the VM, VM:VMWare, and 
VM:OnMetal nodes are defined by 

Create Table VM( … 
) INHERITS(Node); 
Create Table VMWare( … 
) INHERITS(VM); 
Create Table OnMetal( … 
) INHERITS(VM); 

Every VMWare node is also a VM node, and also a Node node.  
The inheritance feature of Postgres is convenient for schema 
generation and code generation because inheritance is taken care of 
by the target database.  For the Gremlin database, we implement 
inheritance by using the inheritance path of a node/edge (e.g. 
Node:VM:VMWare) as the label of the node/edge and using prefix 
matching to find all nodes that are VM or are subclassed from VM.  
The INHERITS feature of Postgres is implemented by view 
management, so its function can be replicated in other relational 
systems.   

The Select and Union operators are implemented by equivalent 
select and union queries in PostgreSql.  The result of a query is 
stored as a TEMP table, so data transfers occur only when the final 
pathway set is communicated.  The Extend operators are 
implemented using bulk join operators, using techniques similar to 
those described by Fan, Raj, and Patel [9].   

The Extend operator can be subclassed along three dimensions: 

• Does it extend a node or an edge? 
• Does it extend from a node or an edge? 
• Does it extend a path forwards or backwards? 

Let’s consider the RPE 

VNF(id=55)->[Connects(){1,5}]->VM(id=66) 
If VNF(id=55) is the anchor, the selection operator returns node.  
This is extended by Connects  edges one to five times.  So, the first 
Extend operator extends a node by an edge, and the subsequent 
ones extend an edge by an edge.  The final Extend operator extends 
an edge by a node.  All of these Extend operators extend the graph 
forwards.  Alternatively, VM(id=66) can be chosen as the anchor 
and the Extend operators will extend backwards.  If the selected 
anchor is in the middle of the RPE, the query plan will have both 
forwards and backwards Extend operators. 

The first Extend operator is shown below.  The Select operator 
creates TEMP table tmp_extend_node, and this table (of nodes) is 
joined against the table (of edges) Connects .  The TEMP table 

                                                                    

5 http://pgxn.org/dist/temporal_tables/ 

representation of a path is uniform for all Select and Extend queries.  
Field uid_list is a list of the node and edge uids in the path, 
concept_list is the class of the corresponding node/edge (for path 
reconstruction), and curr_uid is the id of the last element of the 
path.  After the Select, the T.curr_uid has the node uid which is 
joined against the source uid, source_id_ of the Connects  edge.  
The final predicate ensures that there are no cycles in the path. 

create TEMP table tmp_extend_node_1 as( 
  select ARRAY[  H.id_] || T.uid_list as uid_list,   
  ARRAY[cast(‘Connects’ as text)] || T.concept_list  
as concept_list,  
  H.target_id_  as curr_uid,   
  from Connects H, tmp_Select_node T  
  where H.source_id_ = T.curr_uid 
    AND H.id_ <> ANY(T.uid_list) ); 
The next Extend query extends an edge by an edge, so the 
source_id_ of the Connects  edge is the matches against the 
curr_uid of temp_extend_node1.  There is an implicit Node 
between the edges, with uid H.source_id_, so this uid and class 
label are added to uid_list and concept_list. 

create TEMP table tmp_extend_node_2 as( 
  select T.uid_list || ARRAY[ H.source_id_, H.id_] 
as uid_list,  
  T.concept_list || ARRAY[cast('Node' as text), 
cast(‘Connects’ as text)] as concept_list,  
  H.target_id_  as curr_uid,   
  from Connects__history H, tmp_extend_node_1 T  
  where H.source_id_ = T.curr_uid  
  AND H.source_id_ <> ANY(T.uid_list) and H.id_ <> 
ANY(T.uid_list)   ); 
The other cases of Extend operators are handled similarly.  
Extensions by following edges backwards use the target_id_ as the 
node uid, and prepend to uid_list and concept_list instead of 
appending. 

5.3 Temporal queries 
We used the temporal_tables5 Postgres extension to create a 
transaction-time temporal graph database.  Creating timeslice 
queries is (mostly) a matter of constraining each range variable that 
accesses graph data to the time point of the query.  Time range 
queries are more complex, as the intersection of the time ranges of 
all nodes and edges in the pathway must be computed and kept with 
the pathway. 

When using the temporal_tables extension, each node or edge, e.g. 
VM, has two tables, one for the current snapshot and one for the 
history.  We create a view, e.g., VM__historical, which is the union 
of these two tables.  To evaluate a timeslice query with time 
constraint 

AT ‘2017-02-15 10:00:00’ 
only requires adding the following predicate to the Select and 
Extend queries: 

H.sys_period @> ‘2017-02-15 10:00:00’::timestamptz 

6. Application and Evaluation 
We have been loading data sets into Nepal-structured databases for 
topology data from two different sources.  The first is a virtualized 
network service, with about 2,000 nodes and 11,000 edges in the 
current snapshot.  The second is a legacy network topology used 
for service path applications with about 1.6 million nodes and 7.1 
million edges.  Both databases are loaded into a historical database, 
with a two-month history, and both contain nodes with structured 
data. 



We developed a collection of queries on these data sets.  For the 
virtualized network service, we developed four example queries 
based on the network model in Figure 2.  Two of the queries are 
“vertical”:  a top-down navigation query (from VNF to Host) a 
bottom-up query (from Host to VNF) via HostedOn edges (the 
difference is whether the node at the start vs. the end of the RPE is 
an anchor).  The other two queries perform “horizontal” navigation.   
The first of the horizontal queries one which navigates from Host 
to Host via physical Connects edges (through switches and routers), 
and the second navigates from VM to VM through virtual Connects 
edges (through networks, virtual routers, and VMs).  The results are 
shown in Table 1. 

Type # paths Time (snap) Time (hist) 

Top-down 19.5 .058 sec. .073 sec. 

Bottom-up 2.3 .061 .072 

VM-VM (4) 215.9 .184 .206 

Host-Host (4)  18.5 .067 .081 

Host-Host (6) 561.7 .67 .68 

Table 1.  Query response times, virtualized service graph. 

For each query type, we executed 50 instances and report the 
average number of paths returned, and the average execution time 
in the current snapshot and in the full history (there are only 33 
distinct VNFs so we evaluated only 33 queries instances for top-
down).  We avoided instances that result in zero paths, as they 
tended to have a significantly lower response time.   The horizontal 
queries are normally limited to length-4 paths, but we tried a length-
6 Host-Host path query to test scaling.  The schema has 12 edge 
classes and 54 node classes.  The full history is 6% larger than the 
current snapshot database.  We measured the execution time as 
starting from when the first query was submitted to when the final 
paths table is completed. 

The regular queries that an interactive application would make 
execute in less than 1/10 second, except for VM-VM which 
executes in .206 seconds on the full history.  These response times 
are within the acceptable range for interactive applications.  
Queries on the full history are only moderately slower than the 
queries on the current snapshot. 

We expanded the number of hops allowed for the Host-Host path 
query by two, as paths in the Host-level topology have even 
numbers of hops.  The cost of these queries is significantly higher, 
as very large numbers of paths must be explored. 

These queries, as written, return very large numbers of paths.  The 
issue is that the RPE is very simple, essentially 
Host(name=’ src ’)->[Connects()]{1,6}-> 
Host(name=’ tgt’ ) 
A properly written query uses interconnection topology constraints 
to prune out improper paths.  A simple proxy is to limit the path 
length to 4. 

For the legacy topology, we developed a forwards service path 
query, a reverse service path query (both ‘horizontal’), a top-down 
vertical query, and a bottom-up vertical query.  The horizontal 
queries are of length 4 and the vertical queries are of length 3.  We 
execute each query on 50 instances, again avoiding instances that 
return zero paths, and report the average number of paths returned 
and the average execution time on the snapshot and full history 
graphs.  The full history graph is 16% larger than the snapshot 
graph.  The results are shown in Table 2. 

Type # paths Time (snap) Time (hist) 

Service path 32.9 .038 sec. .040 sec. 

Reverse path 391,000 9.844 9.520 

Top-down 4.4 .029 .039 

Bottom-up 

<partitioned> 

73.18 .672 

.049 

.772 

.059 

Table 2.  Query response times, legacy topology. 

The queries that are executed in the “forwards” direction (with the 
anchor at the start of the RPE) execute within 1/10 second, which 
is acceptable for interactive applications.  The reverse service path 
query returns a huge number of results, and would be used for 
deeper mining queries – in which case a response time under 10 
seconds is acceptable.  Queries on the full history graph are 
moderately slower than on the snapshot graph. 

A disappointing result is the high response time for the bottom-up 
query, which would often be used in an interactive manner.  An 
examination of the results shows that 34 of the 50 samples have a 
response time under .06 seconds, while the remaining 16 samples 
have a response time of 2 to 4 seconds.  Further investigation 
showed that the slow samples encounter nodes with very large 
numbers of incoming edges, almost all of which are irrelevant to 
the query. 

The legacy graph was supplied as a collection of nodes and edges 
with type_indicators – the class(es) of the node or edge.  Nodes 
could have multiple type indicators, but edges have a single type 
indicator.  We loaded the legacy topology as provided, with one 
node class and one edge class.  The problem with evaluating the 
bottom-up query made us reconsider the legacy graph model.  We 
created 66 subclasses, one for each possible edge type_indicator 
value, and loaded a graph from the most recent day’s data.  In the 
relational implementation, each edge class is loaded into a separate 
table.  We evaluated the two slowest queries on the legacy graph: 

• Reverse service path: average of 8.390 sec. 
• Bottom up: average of .049 sec. 

The reverse service path query becomes moderately faster, while 
the bottom up query becomes much faster – fast enough for 
interactive applications.  Both queries benefitted from the 
automatic elimination of many useless edges from the navigation 
joins.  However the reverse service path query naturally encounters 
a very high fanout due to relevant edges, so the performance 
improvement is limited. 

6.1 Summary 
Our experiments demonstrate the usability of Nepal for computing 
paths on communication network topology graphs.  While the 
current implementation is still undergoing a significant 
optimization effort, we were able to execute common user-
suggested path navigation queries with acceptable response times.  
These databases are currently in use for developing troubleshooting 
and Service Quality Management application prototypes. 

Our approach of strongly-typed nodes and edges with subclasses 
aided our experimental development in several ways.  For one, 
strong typing and uniqueness constraints in the Nepal schema 
prevented us from loading garbage data into the graphs, enabling 
early debugging.  By contrast, common property-graph systems 
will let you load garbage without any warnings.  For another, the 
Nepal class system enables the simple expression of the traversal 
atoms, streamlining query development.  Finally, the class system 
enables a natural partitioning of nodes and edges – in our relational 
implementation, we used separate a table for each class.  This 



partitioning can lead to significant performance improvements, as 
is the case with the legacy bottom-up query. 

The relational implementation of Nepal has several attractive 
features.  For one, graph data can be readily mixed with relational 
data, and paths can be post-processed using powerful languages 
such as PostreSQL.  For another, the relational data can be profiled 
to identify trends and data quality problems. 

Using the temporal_table extension to Postgres has been highly 
effective.  While we are storing 60 days of graph snapshots, the 
space overhead is only 16% for the large legacy graph – as opposed 
to 5,900% for the conventional approach of storing 60 separate 
graphs.  The transaction-time tables also allow for temporal 
profiling which can reveal patterns of network inventory 
maintenance. 

7. Related Works  
Graph databases have been studied extensively by different 
researchers [3], and many query languages for graph databases 
were proposed during the last decades, (see a tutorial by Wood [34] 
on the subject). This includes query languages for semi-structured 
databases such as UnQL [6], Lorel [1] and a flexible pattern 
matching of graph queries to semi-structured data [12].  XQuery6 
and XPath7 were developed as query languages for XML. The TAX 
tree algebra for XML [13], was developed in the Timber [14] 
project. SPARQL8 is a query language for Linked Data. TRIPLE 
[30] is a rule-based query language for RDF, based on Horn logic 
and F-Logic. Regular Path Query (RPQ) languages have been 
proposed (see [2][34] for a survey), but the regular expressions are 
on the edge labels. 

The Cypher9 query language is a native graph query language of 
the Neo4j graph database system. Gremlin10 is a query language for 
graph databases that implement Blueprints. Such query languages, 
however, are not well adapted to the type of path retrieval we 
present in this paper or for troubleshooting in communication 
networks.  

Of the open-source languages, Cypher is the most similar to Nepal 
among the above languages. It uses ordinary variables for nodes 
and edges, and allows specifying ‘named paths’ which are like path 
variables. However, the ordinary variables are unsuitable for 
regular path expressions, e.g., for capturing 
[HostedOn()|ConnectedTo()]{1,4}  in a variable, the variable 
should accept sequences of 1–4 edges. The named paths on the 
other hand, are not ordinary variables and cannot be used in a join 
of paths or to hold the result of a regular path expression. In Cypher 
this is not a problem because it neither supports regular path 
expressions (it only uses regular expressions for attribute values) 
nor processing of sets of paths. So, Cypher is limited in its ability 
to extract and process paths of varying length.    

A path-based query language for biological networks has been 
presented in [21], but unlike this work, they do not allow complex 
conditions on paths or manipulation of sets of paths. Another path-
based query language has been described in [8], but they extract 
paths and use them to create complex graph structures. They do not 

                                                                    
6 http://www.w3.org/TR/xquery/ 
7 http://www.w3.org/TR/xpath/ 
8 http://www.w3.org/TR/rdf-sparql-query/ 
9 http://neo4j.com/developer/cypher/ 
10 https://github.com/tinkerpop/gremlin/wiki 
11https://blogs.technet.microsoft.com/dataplatforminsider/2017/04

/20/graph-data-processing-with-sql-server-2017/ 

consider paths as first-class-citizens of the language.  Microsoft has 
incorporated a limited form of RPQ in SQL Server11. 

PGQL [25][29] is a property graph query language developed by 
Oracle which supports regular path expressions over both nodes 
and edges and supports variables that range over path sets.  As such, 
PGQL is similar in its treatment of paths and path variables to 
Nepal. Papers describing PGQL and Nepal were published 
concurrently [18][25].  However the Nepal path matching syntax 
treats nodes and edges symmetrically, has strongly typed 
nodes/edges with complex data types, class inheritance and 
polymorphism, and supports sophisticated temporal queries. 

Several recent works [5][9][16] have found that relational 
databases are competitive with specialized graph engines.  A recent 
graph database “shootout”12 found that Postgres has better 
performance than several open-source graph databases (but is 
harder to write graph queries).  In one approach, the property graph 
is “shredded” into wide tables with every possible property 
[4][17][33]. 

A strongly typed graph can be stored in a collection of tables, one 
for every node and edge class [22].  This approach has been 
disparaged as a “join bomb”13, but it works well in practice.  Nepal 
extends the approach in [22] with complex data and class 
hierarchies on the nodes and edges.  SLQ [35] enhances graphs with 
approximate ontologies.  OrientDB14 has incorporated a graph 
database layer on their document store. 

A body of analytical work exists on temporal graphs, e.g. [11].  
Khurana and Deshpande [19] describe an efficient system for 
materializing a past state of a graph using snapshots and deltas.  
However the entire graph must be materialized even if only a small 
portion is queried.  Campos et al. [7] propose extensions to Cypher 
for temporal graph queries.  Huang et al. [10] describe a bolt-on to 
Neo4J which allows versioning of properties in nodes, and 
Rodriguez [28] describes a bolt-on for the Tinkerpop stack which 
allows property versioning.  Robinson [27] describes how temporal 
graphs can be constructed with a multiplicity of nodes and edges 
for various versions.  In Nepal, we have implemented a full 
temporal graph database which supports sophisticated temporal 
graph queries and in a transparent manner. 

A preliminary description of Nepal appeared in [18], and Nepal was 
demo’ed in [15].   For this paper we present a detailed description 
of Nepal’s motivating application; in addition we have revised the 
language constructs and the algebra, developed strongly-typed 
concepts and temporal support, and have developed a retargetable 
query system. 

8. Conclusions 
In this paper, we describe the inventory database requirements 
needed to support operations management and troubleshooting 
over dynamic network inventories of a virtualized network 
infrastructure in AT&T’s ECOMP [26] (now merged into ONAP).  
Our motivation has been to support service path troubleshooting, 
so we made pathways in the graph a first-class citizen in our 
language and algebra.  Tosca is the standard ONAP modeling 

12 https://www.experoinc.com/post/encore-graph-db-shootout-
presentation-for-austin-data-geeks 

13 https://neo4j.com/blog/demining-the-join-bomb-with-graph-
queries/ 
14 http://orientdb.com/orientdb/ 



language; Nepal enables TOSCA-based model-driven querying of 
the complex collection of inventory entities and relationships 
through strongly-typed concepts and concept components. 
Troubleshooting needs access to in-the-past states of the graph, 
which Nepal supports with timeslice and time-range queries.  Our 
implementation of Nepal has a query-generation architecture, 
creating queries in the choice of target language (currently Gremlin 
or PostgreSQL) from an intermediate form of a DAG of database 
operators. 

Although Nepal is already a highly effective graph search and 
exploration system, there are many avenues of future research.  
These include optimization of RPE evaluation, pathway joins; 
context-dependent RPE evaluation (e.g. routing tables); 
aggregation and data exploration queries on pathway sets; and the 
development of Nepal as a data integration platform. 
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