
 A Graph Database for a Virtualized Network Infrastructure
Pramod Jamkhedkar
AT&T Labs - Research

pramod@research.att.com

Aman Shaikh
AT&T Labs - Research

ashaikh@research.att.com

Theodore Johnson
AT&T Labs - Research

johnsont@research.att.com

N. K. Shankaranarayanan
AT&T Labs - Research

shankar@research.att.com

Yaron Kanza
AT&T Labs - Research

kanza@research.att.com

Vladislav Shkapenyuk
AT&T Labs - Research

vshkap@research.att.com

ABSTRACT
Modern communication networks are large, dynamic, complex, and
increasingly use virtualized network infrastructure. To deploy,
maintain, and troubleshoot such networks, it is essential to
understand how network elements – such as servers, switches,
virtual machines, and virtual network functions – are connected to
one another, and to be able to discover communication paths
between them. For network maintenance applications such as
troubleshooting and service quality management, it is also essential
to understand how connections change over time, and be able to
pose time-travel queries to retrieve information about past network
states. With the industry-wide move to Software Defined Networks
and Virtualized Network Functions (VNFs) [26][24], maintaining
these inventory and topology databases becomes a critical issue.

In this paper, we explore the database requirements for the
management and troubleshooting of network services using VNF
and SDN technologies. This work was initiated in the context of
Open source ECOMP, which has been now merged into ONAP
[24], the new industry-standard for managing network automation.
We develop a graph-based layered network model with layers
representing increasing levels of specificity, from VNFs to physical
hardware. We then describe the kinds of queries required for
activities such as operations management and troubleshooting.

These considerations have led us to develop Nepal, a model-driven
graph database system to represent and reason over network service
topology and data flows within the network. Nepal has several
features making it particularly applicable for querying inventory:
Nepal has a strongly-typed but flexible schema to support model-
driven networking; it makes graph paths a first-class object in its
query system; it has sophisticated support for in-the-past queries;
and it works as a layer over one or more underlying databases.

We demonstrate the capabilities of Nepal by examples, discuss its
model-driven query capabilities, and implementation details on
Gremlin and Postgres. We illustrate how path queries can simplify
the extraction of information from a dynamic inventory of a multi-
layer network and can be used for troubleshooting.

1. Introduction
AT&T’s Domain 2.0 program (D2) aims to leverage cloud
technologies, software defined networks (SDN), and network
virtualization to offer network services with significant levels of
automation [24]. This effort involves a network management
platform (ECOMP, now merged into ONAP) responsible for
automated creation, management, troubleshooting, and

maintenance of AT&Ts networks and services. Cloud technologies
and SDN introduce unprecedented levels of control, dynamism, and
complexity in managing networks. Maintaining and querying a
network topology inventory is essential in software defined
networking with virtualized network infrastructure, where the
network control is directly programmable and the underlying
infrastructure is virtualized and abstracted from network services
and functions [20]. In particular, an inventory can facilitate the
creation of SDN applications using modeling languages, such as
Tosca and Yang, to enable model-driven networking [23].

The components within cloud-based network can vary in their role
from an abstract high-level network function such as a firewall to a
concrete network element such as a physical network interface.
Furthermore, network elements can belong to a complex
classification hierarchy. The network database system must allow
for the categorization and labeling of these elements so that
network operators and management systems can query and update
the network inventory at the proper level of abstraction - without
requiring knowledge and manipulation of unnecessary network
details.

The communication channels along a topology of interconnected
network components form the central constructs over which
network management tasks are carried out, e.g. network service
provisioning, configuration of network elements, auto scaling, and
troubleshooting. Queries such as: “Can network elements A and B
communicate?”, “What is the shortest path from element A to B to
route data packets?”, “Which network services share the
communication link between elements B and C?”, etc. are critical
for such network management tasks. For programmable network
management and tooling, it must be possible to easily construct
these queries and execute them in an efficient manner.

Another key requirement for troubleshooting a network is the
ability to “look into the past”, and reason over the events and state
of the network to fix a problem. Network operators often need to
go back in time to the point at which network event occurred to
troubleshoot a problem. Troubleshooting requires an understanding
of the state of the network elements (including the routing tables,
configuration parameters and alarms), their connections with other
elements, and the exact paths along which the data packets and
control information traveled in order to correlate and localize the
problem at a specific instant of time in the past. Furthermore, these
queries could be posed over a time interval in the past to understand
how the network evolved over time - including the changes the
network elements’ state and the topology of the network.

Finally, most large-scale complex networks, such as the one
managed by AT&T, include network information stored in
different types of inventories. It may be impractical to assume that
the complete network inventory and topology is stored in a single
unified database. Fragmented sources of information limit the

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

ability to seamlessly reason over multiple network inventories for
management of services deployed over different types of networks
or geographical regions. Hence, the network query system must be
flexible enough to operate over different data inventories storing
different parts of the network.

Current database systems are unable to support these features
required for cloud-based virtual networks, as discussed in Section
7. To utilize an inventory it is essential to be able to query the data
and extract information about connections between nodes. This is
not an easy task when the network is large and complicated [32].
Moreover, in typical graph query languages, queries are formulated
by defining a graph pattern that should be matched to the database,
while the goal of most network inventory queries is to find paths in
the graph, often without knowing the length of these paths.
Existing graph query languages are also not designed for time-
travel queries where the temporal aspect is taken into account, so
that a query could refer to a time in the past.

Nepal (NEtwork PAth query Language) is a graph database system
for maintaining an inventory and topology of complex, dynamic
cloud-based networks to support automated network management
applications. Nepal incorporates four key novel features:

1) Schema with multiple abstraction mechanisms: Nepal takes
advantage of entity (and relationship) generalization at query time,
enabling access to complex inventory data in a simple manner,
without requiring the user to know the network details beyond what
is necessary.

2) Paths as first class citizens of the language: Network queries are
posed over a virtual set of paths, and they returns paths. Thus, the
Nepal query language is closed under composition, enabling
complex path queries. Achieving this property in other common
graph languages is difficult because they either return subgraphs or
sets of tuples.

3) Time travel queries: Nepal is a temporal database labeling each
node and edge with timestamp intervals. This labeling allows
network queries to be posed over past temporal snapshots or time
intervals.

4) Retargetable architecture: Nepal queries can be translated to
target different database systems such as Gremlin or SQL. This
feature allows Nepal to be used for reasoning over fragmented
network data stored in different types systems.

2. Automated Management of Cloud-based
Virtualized Network Infrastructure
The ability to create network services by stitching together centrally
controlled virtualized networks functions on cloud platforms
enables the management of network functions in an automated
manner. A&AT took the initiative to build an automated network
management platform called ECOMP for managing cloud-based
network services, and used it as the basis for ONAP. A key
requirement for this platform is a graph-based network database
management system for maintaining network inventory topology
and network states for network service orchestration,
troubleshooting, and other network management tasks.

2.1 Cloud-based Networks
Recent advances in network function virtualization (NFV),
combined with software-defined networking (SDN), have enabled

1 http://www.3gpp.org/technologies/keywords-acronyms/100-the-

evolved-packet-core

network service providers to deploy, manage and troubleshoot
network services with increasing levels of automation.

NFV allows primary network functions such as switches, routers,
gateways, firewalls, and also complex network functions, such as
the evolved packet core1 (EPC) in mobility networks, to be
virtualized and implemented as a collection of virtual machines
(VMs) deployed over cloud infrastructure. SDN technologies allow
remote configuration of these virtualized network functions via
standard protocols.

When a network function is moved from a physical implementation
to a virtualized one, it often results in a substantial increase in
complexity of the function. The physical to virtual network
function transition is seldom a one to one map. In most cases, what
was earlier a single physical box now gets replaced by tens of
interconnected VMs running over a physical network fabric within
a data center. The result of such virtualization of network functions
is called virtualized network function (or VNF).

Figure 1: A simplified model of virtualized cloud-based
network graph topology

A VNF typically consists of a number of subcomponents called
virtual function components (VFCs). Each VFC can be viewed as
an indivisible subcomponent of the VNF which runs on a single
VM. The VFCs, each running within a VM, collectively implement
the VNF by communicating over the virtual networks defined
within the cloud. A virtual network provides full connectivity
among all VMs that are connected to it, and also provides isolation
from other VMs and virtual networks in the cloud. Virtual routers
enable connectivity among virtual networks. VMs, virtual networks
and virtual routers, together constitute the virtual infrastructure
within which VNFs operate. The virtual connectivity infrastructure
is also called the overlay network.

The virtualized infrastructure is instantiated on a physical
infrastructure fabric. This includes physical servers, physical
switches and routers, which provide the underlying physical
connectivity for the virtual machines to communicate with each
other. The network formed by the physical infrastructure is also
called the underlay network.

2.2 The ONAP Platform
The complexity introduced by virtualization of network functions
is a tradeoff for automation in management of these functions
including deployment, configuration, auto-scaling, and
troubleshooting. This enables AT&T to deploy and manage
network services in an automated manner, including the resources
(i.e. network, cloud and infrastructure) which comprise that service.
Towards this goal, A&AT initiated the development of a network

management platform called ONAP, for design, creation and life-
cycle management of virtualized network services.

The ONAP platform consists of five key subsystems:

1. Service Design and Creation (SDC):

This component is a subsystem responsible for design and
definition of models of AT&T services and resources which
comprise those services. ONAP follows a model driven approach
of services and resources described using e.g. TOSCA, which
provides a standard vocabulary for different ONAP components,
and enables re-usability of ONAP models.

2. Policy:

Policies are statements of intent, expressing what is to be achieved
by a system under a given context (or a set of conditions). ONAP
includes a dedicated component responsible for Policy. Policies are
expressed in policy language such as Drools2 or XACML3, and
control the network elements for responding to failures, auto-
scaling, and so on.

3. Master Service Orchestrator (MSO):

The MSO’s primary function is the automation of service
instantiation based on the templates and service definitions
provided by ASDC. The MSO executes well-defined processes for
each of these tasks, which are defined via formal, machine readable
workflows or configuration templates, by collaborating with
various controllers for network, infrastructure and applications.

4. Active and Available Inventory (A&AI):

A&AI keeps an inventory of virtualized resources, services, and
customer subscriptions – including all artifacts generated by the
MSO. In addition, A&AI stores the relationships between these
entities, enabling navigation queries. Local resource orchestrators
typically maintain their own inventories.

5. Data Collection Analytics and Events (DCAE):

The DCAE platform manages event information, including key
performance indicators, events, usage and telemetry, etc. collected
from the dynamic virtualized infrastructure. The information is
subsequently fed to a collection of analytic functions performing
both offline and real time analysis of the data to determine faults
and alarm conditions within AT&T network services and
infrastructure.

2.2.1 ONAP and Nepal
We are developing Nepal to support the kind of complex queries
required for advanced network management applications. Nepal is
designed to integrate data from A&AI and other inventory
databases to create a topology, maintain a historical graph over the
topology, and enable the simple and efficient expression of path
queries over these graphs.

2.3 Need for Path Calculations in Cloud-
based Networks
Understanding and reasoning over the relationships among the
network elements is a key requirement for orchestration,
troubleshooting, analysis and other management tasks within a
network. The complexity of cloud-based networks makes this
requirement more complex and more critical. To cut through this
complexity, we developed information organizing principles. In

2 https://www.drools.org/

this section we introduce a layered network model to capture the
topology for virtualized network as shown in Figure 2.

2.3.1 Layered Network Model
A network created only with physical elements consists of
connections among various network elements such as compute
servers, switches and routers leads to a flat topology of
interconnected elements. It is over this flat topology that data
packets are routed and communication channels are established.

A virtual, cloud-based network introduces a new dimension to this
topology. The end points of communications are no longer physical
servers but VMs which run over the physical servers. These VMs
communicate via virtual networks and virtual routers, which are
virtual constructs running over a physical infrastructure. As
explained earlier in Section 2.1, the physical network elements only
provide a communication underlay fabric over which a
communication fabric of virtual network infrastructure is created.
Hence a new virtualization layer needs to be introduced in the
network topology.

In Figure 2, the bottom two layers (i.e. the Physical Layer and
Virtualization layer) represent the physical underlay
communication network and the virtual overlay communication
network. Each of these layers have two types of edges: vertical and
horizontal. Horizontal edges form the paths of communication
within a layer, e.g. VM to virtual router, server to switch, and so
on. The vertical edges capture HostedOn relationships, e.g. a VM
executes on a server.

Figure 2: Layered network model

The top two layers are service design layers. A network service
consists of a set of interconnected VNFs. The VNFs are stitched
together to form an end-to-end communication channels for the
network service. This service topology of interconnected VNFs is
represented by the Service layer in our network model. End-to-end
high-level data flows and control flows for the network service are
described and represented at this layer.

As explained in Section 2.1, each VNF is divided into a number of
subcomponent VFCs which comprise the Logical Layer. Vertical
edges between the Service and Logical layers indicate the VFCs
that comprise a VNF. Each VFC is an indivisible virtual network
component which runs within a single container or VM. Vertical
edges from the Logical to the Virtual layer capture this mapping.

The upper two layers (Service and Logical) capture the service
components and their relationships. End-to-end service-level data

3 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html

and control flows can be defined over these two layers during
design time. The bottom two layers (i.e. Virtualization layer and
Physical layer) are defined during service deployment. It is only
after the service is instantiated over a virtual network fabric that
elements at the Virtualization layers come into being and are
mapped to the Service and Logical layers

Together, the layered network model allows for separation of
network relationships at various levels of abstraction. Such a
separation provides several advantages: network services can be
queried at different levels of abstraction and granularity, we can
reason about the relationship between abstract and physical
elements, and we can map service paths at an abstract (e.g.,
Logical) layer to service paths at a more concrete (e.g., Physical)
layer.

2.3.2 Path Calculations within a Layered Network
Topology
A primary reason for storing network information as a topology is
to efficiently and easily reason over how control and data packets
move through the different elements of a network topology. Such
reasoning is critical for various network management tasks
including troubleshooting, optimization, placement, etc. This can
be achieved via exploring the network topology not as subsets of a
connected graph, but rather via network paths explored along the
topology of the network. For this is the reason, Nepal treats paths
as the first-class citizens of the query language.

Given an inventory of a complex network expressed as a network
topology, the following are the types of queries that need to be
processed for network management tasks.

Calculating routes – A network configuration service might want
to know all possible paths between two VMs in order to determine
the most efficient one to be configured. Such configuration may
require the paths to pass through a set of routers (possibly in a given
order) as a service constraint. A security management system might
want to know if any path exists between two network elements
which bypass the firewalls. Troubleshooting services often requires
one to know if data flows for a given set of customers experiencing
service quality issues share a common set of elements, which may
be responsible for the issue.

Calculating induced paths – In a virtualized network system,
control and data flows are often expressed or known at the service
design layers; understanding those paths at the virtualization or
physical layers is important for network management tasks.
Similarly, a network path at the virtualization layer via virtual
network elements has an induced physical equivalent path via
physical elements. Determining an induced path for a given
network path at a different layer includes calculating the
corresponding network elements by traversing the layers vertically,
and then calculating the induced path at that layer. For example, if
a service path includes VNFs 1, 2, and 3, determining the
corresponding induced path at the physical layer, will require to
calculate the physical servers over which the VNFs run, and the
paths between those physical servers.

Calculating shared fate -- When a network element fails, it affects
network services which depend on it. For example, if a switch fails,
all the network paths passing through that switch will fail.
Similarly, if a physical server fails, all VMs running on that server
fail, and subsequently the VNFs which those VMs implement. To
determine all the VMs, and VNFs affected by the failure of a
physical server, one computes the vertical paths from that server to
all the corresponding VNFs via the VMs and VFCs along the upper
layers in the layered model.

Calculating service dependencies on physical infrastructure – To
determine the footprint of a VNF at the Virtualization layer (i.e. all
VMs implementing that VNF), and Physical layer (i.e. all physical
servers on which those VMs run) one calculates the paths along the
vertical connections. Such calculations are important for
management of that VNFs virtual and physical resources.

History-based troubleshooting – Understanding the network
behavior at some point in the past is critical for troubleshooting.
What was the network path taken at the time of the failure? What
was the physical and virtual footprint of a VNF, and how did it
evolve over time? Between timestamps t1 and t2, which network
paths flowed through a given network element?

These are some of the questions for which answers are needed by
network operators in order to troubleshoot a problem. Hence, the
ability to query a network topology graph over various temporal
granularities is important in network management. In the next
section, we describe the Nepal system which is designed for
expressing these queries as path patterns over a graph-based
network topology.

3. The Nepal System
While the A&AI component of ONAP (Section 2) stores an
inventory, it was not designed to provide the capabilities needed to
service path calculations: model-driven entities and relationships
with multiple abstractions, a path-oriented query language, time
travel, and a retargetable architecture. We developed Nepal to
address these needs and provide a foundation for trouble shooting,
service quality management, and operations management within
ONAP.

The Nepal system is designed to provide the capabilities needed for
service path calculations: model-driven entities and relationships
with multiple abstractions, a path-oriented query language, time
travel, and a retargetable architecture (the A&AI component of
ONAP, Section 2, stores an inventory - one of several used by
Nepal). Nepal supports these features and provides a foundation for
trouble shooting, service quality management, and operations
management within ONAP.

In this section, we describe the Nepal query language and system.
We start with a discussion of the Nepal data model.

3.1 Architecture
We designed Nepal to be a shim layer between network
applications and one or more database systems. Nepal can be
thought of as having three components, a schema system, a query
translator, and a graph data management system.

The schema system manages the Nepal schemas (described in
Section 3.2) for use by the query translator and the graph data
management system. This Nepal component provides services for
translating data between input data representations, native Nepal
representations, and target system (relational, property graph) data
representations.

The query translator takes as input a Nepal query and one or more
Nepal schemas and generates a Python program that issues queries
to one or more target databases. The code generation system
attempts to execute as much of the query in the target database as
possible, primarily performing query sequence management.
However the Python code will perform processing not available in
the target database(s), e.g. execute functions not present in the
target DBMS, and shipping partial results from one target database
component to another.

We originally intended for Nepal to execute on top of existing
graph databases (e.g. A&AI, Section 2.2). However the need for

temporal graph management and interaction with multiple data
sources (cloud management system, legacy systems, and so on) led
us to develop a graph database management layer. This layer
translates inserts, deletes, and updates into the collections of inserts,
deletes, and updates in the target (relational, property graph)
database. Several data sources provide periodic snapshots of their
contents rather than update streams, so the graph database
management layer also provides an update-by-snapshot service.

3.2 Data Model Basics
Nepal is a graph based database system, which is a natural fit for
capturing the topology of a communication network. Unlike most
graph database languages (see Section 7Error! Reference source
not found.), which use the property graph model, all nodes and
edges in Nepal have a strongly typed schema – an appropriate
choice for an automation-friendly network inventory database. In
this section we describe some Nepal modeling concepts necessary
for understanding the Nepal language.

The nodes in a Nepal graph represent different types of network
entities, and the edges capture various types of relationships among
these entities. Entities in a cloud-based virtualized network may
include physical servers (or hosts), switches, routers, virtual
machines (VMs), virtual network functions (VNFs), virtual
function components (VFCs), virtual routers, and so on.

The entities can have various relationships: HostedOn (e.g. a VNF
is HostedOn a VFC, which is HostedOn a VM, etc.), ConnectedTo
(a server is ConnectedTo a switch, which is ConnectedTo a Router,
etc.) and so on.

These entities and relationships must be communicated among the
many organizations which query and update the inventory: the
master service orchestrator, application and resource orchestrators,
and network engineers performing maintenance and
troubleshooting, and so on. The entities and relationships have
specific collections of fields which the application logic of the
various customers of the inventory graph relies on. We have found
that using a traditional schema-free graph database based on the
property graph model requires extensive application-side logic to
ensure automation-friendly database schemas and constraints.

The entities and relationships stored in Nepal have complex
relationships to each other. For example, there are many kinds of
VNFs (DNS, firewall, etc.) and many kinds of VFCs (proxies, web
servers), many kinds of virtualization containers (virtual machines,
Docker containers), and so on. Forcing this complexity upon the
query writer would be overwhelming, so Nepal uses an abstraction
mechanism which we call strongly-typed concepts to generalize
disparate nodes and edges. In this paper, we restrict our discussion
to node and edge class hierarchies.

All nodes and edges in a Nepal schema are of a specific class, and
are part of a single-rooted class hierarchy. The base class defines
properties of every Nepal database entry, and has two subclasses:
Node and Edge, which are the root classes of all nodes and edges,
respectively. The subclass of a parent class has all of the fields of
the parent class, and optionally additional fields. With this
mechanism, one can define a generic network entity (such as a
VNF), with subclasses that add additional information as needed:
VNF:DNS, VNF:Firewall, and so on.

Edges also have a class hierarchy. While this feature is unusual for
graph databases, we were influenced by the OASIS TOSCA4
standard for defining the topology of cloud-based services. ONAP

4 http://docs.oasis-open.org/tosca

uses TOSCA as its standard modeling language, so network
topology sources are described using TOSCA and therefore
compatibility is needed. However, edge hierarchies are a
convenient modeling tool. So, for example, there can be a Vertical
class derived from Edge, and from which all other Vertical edges
are derived: Vertical:ComposedOf, Vertical:HostedOn:OnVM,
Vertical:HostedOn:OnServer, and so on.

As with the Node hierarchy, the Edge hierarchy allows the system
modeler to add relevant information as needed. For example, there
might be a base ConnectedTo edge that describes communication
connections. However, when a server is ConnectedTo a switch, we
need to describe the server and switch interfaces of the connection.
When a VM is ConnectedTo a network, we need to describe the IP
address that the VM exposes to the network. So a
ConnectedTo:ServerSwitch edge extends the ConnectedTo edge by
adding fields ServerInterface and SwitchInterface while
ConnectedTo:VmRouter extends ConnectedTo by adding field
IpAddress.

The Nepal Schema language is derived from the Tosca schema
language (data_types, node_types, capability_types), allowing
automatic translation from Tosca to a Nepal schema. Tosca
contains a graph schema language – edges are “capability types”
and node types specify the class and number of the capabilities
(edges) that can enter or leave the node. Nepal uses this system to
define graph schemas, a simple example of which is shown in
Figure 3.

Figure 3. Simple network underlay/overlay graph schema.

The dashed lines indicate parent-child inheritance, while the solid
lines among the nodes indicate allowed edges. Note that
composed_of and hosted_on are both derived from Vertical, so that
one can traverse from a VNF to its physical servers by following
Vertical edges. However one cannot directly link a VNF to a
physical_server as no such edge is permitted by the graph schema.

3.2.1 Structured Data
The entities in a network graph typically contain a significant
amount of structured data. For example, a Router might contain a
routing table, which is a list of routingTableEntries entries of the
form:

(IPAddress address, Int mask, String interface)

Then a routing table in a Router node can be expressed as

List[routingTableEntry] routingTable

The Nepal schema language uses the extended entities described by
the node_types and data_types in TOSCA (the standard ONAP
modeling language). A brief description of the schema system is
that

• A data_types section describes the composite data types
available to the nodes and edges in the schema.

• A data type can have fields that are of other defined data
types. The resulting composition DAG must be acyclic.

• A field can be a container type, containing fields of a
particular type. The available containers are list, set, and
map.

• Nodes, edges, and data types all support inheritance.
Inheritance implies the addition of fields and constraints
to the parent class, and allows substitution of a subclass
for a parent class.

3.3 Language Syntax and Semantics
Nepal queries are centered on pathways, which are first-class
entities (the word “path” is overloaded in the context of
networking). A pathway is an alternating sequence of nodes and
edges which always start and end with a node: n1, e1, …, ek-1, nk. A
single node n1 is a pathway, and a single edge has implicit nodes at
its endpoints: e1 is shorthand for n, e1, n’.

Pathways are specified using regular pathway expressions, or
RPEs. The atoms of an RPE specify the properties of the nodes or
edges that satisfy the atom. An atom is specified by a class name,
and any additional constraints on the fields of the records of that
class. For example, all VMs with status “Green” are specified by
the atom

VM(status=‘Green’)

This atom is satisfied by all records of class VM, or of a (possibly
transitive) subclass of VM. Atoms are strongly typed: all fields
referenced in the atom predicate must be fields of the indicated
class.

The name portion of an atom (e.g., VM) refers to a strongly typed
concept as defined in a Nepal schema (if the name of the subclass
is unique, the inheritance chain can be discarded). The schema
might have two different kinds of VMs, VM:VMWare and
VM:OnMetal. The atom VM(…’) refers to both VMWare nodes
and OnMetal nodes, but only the VM fields can be referenced.
Similarly VM might be subclassed from Container, with sibling
Container:Docker. The atom VM(…) refers only to those
Containers that are subclassed into VM, and does not refer to any
Docker container.

The subclassing system determines whether an atom is a node or an
edge. VM is a node because it is (transitively) subclassed from
Node, while a HostedOn atom is an edge because it is (transitively)
subclassed from Edge.

 A regular pathway expression is defined recursively, in a manner
similar to conventional regular expressions.

• A node or edge atom is an RPE.
• If r1 and r2 are RPEs, then the concatenation r1->r2 is

an RPE.
• If r1 and r2 are RPEs, then the disjunction (r1|r2) is an

RPE.
• If r is an RPE and i ≤ j are positive integers, then the

repetition [r]{ i,j} is an RPE.

We have already defined how pathways satisfy atoms, so we
proceed to define pathway satisfaction of the other RPE

constructions. Let p be a pathway n1,e1, …ei, ni+1, …, ek-1, nk. Then
p matches r1->r2 if one of the following four conditions are
satisfied:

• n1,e1, …ei, matches r1 and ni+1, …, ek-1, nk matches r2.
• n1,e1, …ni, matches r1 and ei, …, ek-1, nk matches r2.
• n1,e1, …ni, matches r1 and ni+1 , …, ek-1, nk matches r2.
• n1,e1, …ei, matches r1 and ei+1, …, ek-1, nk matches r2.

This definition of catenation allows us to easily specify pathways
via mixtures of edge and node traversals. This will be illustrated in
the first two examples of Section 3.4, in which pathways are
specified using RPEs that mix Node and Edge atoms.

Pathway p satisfies the disjunction (r1|r2) if it satisfies r1 or r2 (or
both). Pathway p satisfies [r]{ i,j} if it satisfies r->r->…->r where
the repetition occurs between i and j times, inclusive.

In comparison to a Regular Path Query (RPQ) [2][34], Nepal RPEs
refer to both nodes and edge, with predicates on their fields. PGQL
[25] allows expressions over both nodes and edges, but treats them
separately. Nepal treats nodes and edges symmetrically, which can
greatly simplify complex expressions.

In Nepal we make several restrictions on the RPEs that can be used
to constrain pathways.

• All RPEs must be length-limited. This can be done either
in the RPE (finite upper bounds on the repetition blocks)
or with a constraint on the maximum length of the
pathway.

• All RPEs must have at least one anchor – an atom that
has a small number of records that satisfy it. For
example, VM() is (probably) not an anchor, but
VM(id=55) is. The meaning of “small” depends on
available system resources. In join queries, an anchor
can be “imported” from a joined path.

Anchored, length-limited RPEs allow Nepal to efficiently find
pathways in a large graph database. The requirement that the query
planner be able to find an anchor causes our implementation to
reject RPEs that involve only repetition blocks with i=0. For
example,

[VNF()]{0,4}->[Vertical()]{0,4}

does not have an anchor because the empty path satisfies the RPE.
These RPEs are not common and are likely malformed. However
RPE transformations can be applied to create anchored RPEs, with
the empty path added for completion.

3.4 Language Features with Examples
A Nepal query has the form

Retrieve <list of pathway variables>
From <list of <source, variable> pairs>
Where <constraints on the pathway variables>

The source is an unmaterialized view of pathways in a graph
database, and the view PATHS is the set of all pathways.
Additional views can be defined, but we do not explore this aspect
of Nepal in this paper. Each pathway variable must have a
MATCHES predicate (unless one is implicit in the pathway view
source).

The Nepal query language syntax is an SQL-like syntax. A
significant difference between SQL and Nepal is that while SQL
range variables are collections of records, Nepal range variables are
collections of pathways.

For our first example, suppose a network engineer needs to replace
the server with id 232425, and wants to determine all VNFs that
will be affected. If the network engineer knows that all VNFs are
implemented through a collection of VFCs, and all VFCs are hosted
on VMs, which are executed on hosts, then the network engineer
can execute the following query:

Retrieve P From PATHS P WHERE P MATCHES
VNF()->VFC()->VM()->Host(id=23245)

The hierarchical nature of the Nepal schema insulates the network
engineer from many details: the exact type of the VNF, VFC, VM
and Host nodes. However, the exact sequence of implementation
must be known – perhaps a VFC is not virtualized and runs directly
on a host. If all implementation edges are subclassed (directly or
transitively) from Vertical, a simpler and more generic query can
be written:

Retrieve P From PATHS P WHERE P MATCHES
VNF()->[Vertical()]{1,6}->Host(id=23245)

Join queries can be expressed with the use of pathway functions.
The most basic functions are source(P) and target(P), which return
the source and target nodes of P, respectively. The class of
source(P) / target(P) is the least common ancestor of all classes that
an analysis of P’s MATCHES expression indicates can be the
source / target of P. For example, the following (simplified) query
finds the physical communication path between the host that
implements the VNF with id 123 and the VNF with id 234:

Retrieve Phys
From PATHS D1, PATHS D2, PATHS Phys
Where
 D1 MATCHES VNF(id=123)->Vertical(){1,6}->Host()
 And D2 MATCHES VNF(id=234)->Vertical(){1,6}-
>Host()
 And Phys MATCHES ConnectsTo(){1,8}
 And source(Phys)=target(D1)
 And target(Phys)=target(D2)

While range variable Phys does not have explicit anchors, they are
provided by the joins against the anchored range variables D1 and
D2.

Additional functionality is provided by subqueries. For example,
the following query returns all VMs that do not host a VFC or VNF

Retrieve V From PATHS V
Where V MATCHES VM()
And NOT EXISTS(
 Retrieve P from PATHS P
 Where P MATCHES
 (VNF()|VFC())->[HostedOn(){1,5}]->VM()
 And target(V) = target(P)
)

While many applications naturally consume pathways, other
applications are best served with processed versions of the paths.
Since the core Nepal system processes pathways, the result
processing layer operates with a different algebra. The result
processing layer makes use of well-known functions, for example
source() and target(). So for example, we can transform the query
that finds VM() pathways of VMs that do not host a VNF or a VFC
into one which returns the names and ids of these VMs by replacing

Retrieve V From PATHS V
With

Select source(V).name, source(V).id From PATHS V

By changing the keyword Retrieve with the keyword Select, we
indicate that post processing is to be performed on the returned
pathways. A full discussion of the Select clause is beyond the scope
of this paper.

4. Temporal Graph Queries
Network inventory databases are often used to support complex
network management applications such as troubleshooting and
service quality management. These applications need access to in-
the-past states of the graph. For example, to diagnose an increase
in dropped calls starting at 10:00 am, the network engineer needs
to consult the state of the network at 10:00 am, not the current, e.g.
1:00 pm, state of the network.

A temporal extension to Nepal (discussed in Section 5) stores nodes
and edges with their transaction time [31] by keeping a time range
variable which indicates the system time when the database
processed inserts, updates, and deletes. This temporal extension
allows two types of temporal queries: time point queries, which
executes at a particular point in time, and time-range queries which
return results over a time interval.

The syntax for a time point query adds a time point either to the
query as a whole (using the At keyword), or to the individual range
variables. For example, the VNFs with components that are hosted
on server 23245 at 10:00 am can be retrieved by the following
query:

AT ‘2017-02-15 10:00:00’
Select source(P) From PATHS P
Where P MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=23245)

The set of VNFs which have components hosted on server 23245
at 10:00 am and server 34356 at 11:00 am can be retrieved using
the query

Select source(P)
From PATHS P(@‘2017-02-15 10:00’),
 Q(@‘2017-02-15 11:00’),
Where P MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=23245)
And Q MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=34356)
And source(P) = source(Q)

A time-range query specifies a time range for the query, and returns
all pathways that satisfy the query at some point during that time
range, along with the time range that the pathway can be asserted
to exist in the database.

Let us revisit the example of finding VNFs with a component
executing on host 23245, but between 9:00 am and 11:00 am.

AT ‘2017-02-15 9:00’ : ‘2017-01-15 11:00’
Select source(P)From PATHS P
Where P MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=23245)

Every pathway returned by this query has a time range during
which it can be asserted in the database. Furthermore, this range is
the maximal such range. For example, this query might return

 result1:{ times: [‘2017-02-05 06:30’, ‘2017-02-15 09:45’],
 path: [n1,…,nk] },
 result2:{ times: [‘2017-02-15 09:15’,],
 path: [n’1,…,n'k’] },

So the pathway of result1 is asserted to have started at 6:30 am and
ended at 9:45 am, while the pathway of result2 starts at 9:15 and
still exists. Since these are maximal time ranges, we know that
some change occurred in the graph to invalidate the pathway of
result1.

In the case of a join query, the semantics of specifying the time
range of using AT to associate a time range with a query vs.
associating time ranges with each pathway variable are subtly
different, even when all of the time ranges are the same. When

using AT, all results must coexist during the associated time range,
which is the maximal time range when all of the pathways co-
existed. For example:

 result1:{ times: [‘2017-02-15 09:15’,],
 P: { path: [n1,…,nk]},
 Q: { path: [n1,…,nk]}
 }, …

If each range variable has its own time range, then there is no
implicit temporal relationship between the range variables (explicit
relationships can be specified in the Where clause), and each range
variable has its own maximal time range in the output:

 result1:{
 P: { times: [‘2017-02-15 10:15’,], path: [n1,…,nk]},
 Q: { times: [‘2017-02-15 08:00’, ‘2017-02-15 09:55’],

 path: [n1,…,nk]}
 }, …

In a previous work [18], we proposed highly targeted temporal
aggregation queries for network engineers:

• First Time When Exists / Last Time When Exists : return
the first time / last time when a pathway that satisfies the
query can be found.

• When Exists : return the time intervals during which a
satisfying pathway can be found.

These specialized queries can clearly be answered using the results
of a time range query, though optimized evaluation plans might be
possible. Another targeted query is the path evolution query, which
tracks the changes of the field values in a specific pathway (i.e. with
specific node and edge ids). Path evolution queries find use in
visualization applications, in which a specific path returned by a
query can be chosen and explored further. Path evolution queries
are clearly a special case of the time range query.

5. Implementation
We have developed an implementation of Nepal for use in
advanced applications in ONAP [24] such as troubleshooting and
service quality management. In its current status, we have
implemented all of the features described in this paper, with the
exceptions which are still under development:

• subqueries
• Full query access to structured data (query access to non-

atomic types in a container, e.g. list, set, map, is not yet
supported)

We have implemented the Nepal query system as a retargetable
query translator. Currently we can translate Nepal queries into
either Gremlin or SQL (currently PostgreSQL). The ability to
generate code for multiple platforms gives us the ability to use
Nepal as a data integration platform, as paths from different data
sources with different underlying query languages can be joined
together.

5.1 RPE Evaluation
Nepal first transforms an RPE into a normalized form consisting of
four types of blocks:

• Atoms (specific node or edge predicates), e.g.
VM(status=’green’)

• Sequence(R1,…,Rn), representing (R1)->(R2)->…-
>(Rn), where each Ri is an RPE

• Alternation(R1, …, Rn) representing (R1)|…|(Rn),
where each Ri is an RPE

• Repetition(R1,n,m) representing [R1]{n,m}, where R is
an RPE

Nepal then performs anchor selection by finding every possible
anchor in the RPE, evaluating the cost of the anchor, and selecting
the lowest-cost one. In the presence of alternation blocks, an
anchor is not necessarily a single atom, but rather a collection of
atoms that “splits” the RPE. Consider, for example,

VNF()->[HostedOn()]{1-3}->
(VM(id=55)|Docker(id=66))->HostedOn{1,2}->Host()

One possible anchor that splits the RPE is in the alternation block
(VM(id=55)|Docker(id=66))

which contains the two atoms of the candidate anchor VM(id=55)
and Docker(id=66). Since these are highly specific atoms, the pair
is likely to be selected as the anchor.

The algorithm for finding anchors applies the following rules:

• Atom: select and cost the atom as an anchor.
• Sequence: select and cost each Ri in the sequence block.
• Alternation: Collect the set of anchors from each of the

Ri. The collection of possible anchors is the cross-
product of the n anchor sets from each of the Ri.

• Repetition: Convert Repetition(R1,n,m) into
Sequence(R1,Repetition(R1,n-1,m-1)) and return the
anchor set from R1.

The costing of an anchor is currently performed by estimating the
cardinality of the anchor (number of nodes/edges). Database
statistics are used if available; otherwise schema hints are used.

Anchor finding through nested alternation blocks can result in an
exponential blowup in the number of possible anchors. The current
implementation avoids this problem by costing the anchor sets
when an Alternation block is encountered, and returning the union
of the best anchor from each alternate Ri.

The normalized RPE and the selected best anchor are then
converted into a collection of database operators with a conversion
technique based on implementing a nondeterministic finite
automate. The basic operators are Select, Extend and Union.
Select operators evaluate the anchor atom(s). Extend operators
evaluate the non-anchor atoms. Union operators collect results
where multiple paths are possible (Alternation and Repetition) –
replacing epsilon transitions.

The Extend operators can follow edges either forwards or
backwards. For example, one possible plan for evaluating the
example RPE is:

• Compute VM(id=55)|Docker(id=66)
• Extend forwards by))->HostedOn{1,2}->Host()
• Extend backwards by VNF()->[HostedOn()]{1-3}

A MATCHES operator returns a 1-ary table of paths, and join
operator returns n-ary table of paths. A full discussion of join
processing and optimization is beyond the scope of this paper.

5.2 Code Generation
As described in Section 3.1, the code generation system creates
queries against a target database, with Python code to perform
query sequencing and manage data transfers. The details of the
transformation and code generation depend on the target database.

For Gremlin, Select and Extend operators are send to the DBMS
and the results are collected by the Python management code. We
have implemented channels for our Python framework which
collect results from one or more Gremlin queries and supplies them

to one or more Gremlin queries. Thus, the Union operators are
implemented by channels.

To accelerate the evaluation of Nepal queries against a Gremlin
database, we have implemented several extended operators. For
example, we have an ExtendBlock operator for Repetition
operators. This extended operator improves efficiency by keeping
the data in the Gremlin database for multiple operators (avoiding
data transfer overheads), and performing loop unrolling. The RPE
payload R in the ExtendBlock operator is limited – it must be a
sequence of atoms or alternations of atoms. The query planner
module can recognize this pattern and replace a collection of
Extend operators with an ExtendBlock operator.

The Postgres implementation of Nepal uses one table for each
distinct Node and Edge class (including Node and Edge), as well as
a table to ensure that unique identifiers are indeed unique. We
make use of the Postgres INHERITS keyword to implement class
inheritance. So for example, the VM, VM:VMWare, and
VM:OnMetal nodes are defined by

Create Table VM(…
) INHERITS(Node);
Create Table VMWare(…
) INHERITS(VM);
Create Table OnMetal(…
) INHERITS(VM);

Every VMWare node is also a VM node, and also a Node node.
The inheritance feature of Postgres is convenient for schema
generation and code generation because inheritance is taken care of
by the target database. For the Gremlin database, we implement
inheritance by using the inheritance path of a node/edge (e.g.
Node:VM:VMWare) as the label of the node/edge and using prefix
matching to find all nodes that are VM or are subclassed from VM.
The INHERITS feature of Postgres is implemented by view
management, so its function can be replicated in other relational
systems.

The Select and Union operators are implemented by equivalent
select and union queries in PostgreSql. The result of a query is
stored as a TEMP table, so data transfers occur only when the final
pathway set is communicated. The Extend operators are
implemented using bulk join operators, using techniques similar to
those described by Fan, Raj, and Patel [9].

The Extend operator can be subclassed along three dimensions:

• Does it extend a node or an edge?
• Does it extend from a node or an edge?
• Does it extend a path forwards or backwards?

Let’s consider the RPE

VNF(id=55)->[Connects(){1,5}]->VM(id=66)
If VNF(id=55) is the anchor, the selection operator returns node.
This is extended by Connects edges one to five times. So, the first
Extend operator extends a node by an edge, and the subsequent
ones extend an edge by an edge. The final Extend operator extends
an edge by a node. All of these Extend operators extend the graph
forwards. Alternatively, VM(id=66) can be chosen as the anchor
and the Extend operators will extend backwards. If the selected
anchor is in the middle of the RPE, the query plan will have both
forwards and backwards Extend operators.

The first Extend operator is shown below. The Select operator
creates TEMP table tmp_extend_node, and this table (of nodes) is
joined against the table (of edges) Connects . The TEMP table

5 http://pgxn.org/dist/temporal_tables/

representation of a path is uniform for all Select and Extend queries.
Field uid_list is a list of the node and edge uids in the path,
concept_list is the class of the corresponding node/edge (for path
reconstruction), and curr_uid is the id of the last element of the
path. After the Select, the T.curr_uid has the node uid which is
joined against the source uid, source_id_ of the Connects edge.
The final predicate ensures that there are no cycles in the path.

create TEMP table tmp_extend_node_1 as(
 select ARRAY[H.id_] || T.uid_list as uid_list,
 ARRAY[cast(‘Connects’ as text)] || T.concept_list
as concept_list,
 H.target_id_ as curr_uid,
 from Connects H, tmp_Select_node T
 where H.source_id_ = T.curr_uid
 AND H.id_ <> ANY(T.uid_list));
The next Extend query extends an edge by an edge, so the
source_id_ of the Connects edge is the matches against the
curr_uid of temp_extend_node1. There is an implicit Node
between the edges, with uid H.source_id_, so this uid and class
label are added to uid_list and concept_list.

create TEMP table tmp_extend_node_2 as(
 select T.uid_list || ARRAY[H.source_id_, H.id_]
as uid_list,
 T.concept_list || ARRAY[cast('Node' as text),
cast(‘Connects’ as text)] as concept_list,
 H.target_id_ as curr_uid,
 from Connects__history H, tmp_extend_node_1 T
 where H.source_id_ = T.curr_uid
 AND H.source_id_ <> ANY(T.uid_list) and H.id_ <>
ANY(T.uid_list));
The other cases of Extend operators are handled similarly.
Extensions by following edges backwards use the target_id_ as the
node uid, and prepend to uid_list and concept_list instead of
appending.

5.3 Temporal queries
We used the temporal_tables5 Postgres extension to create a
transaction-time temporal graph database. Creating timeslice
queries is (mostly) a matter of constraining each range variable that
accesses graph data to the time point of the query. Time range
queries are more complex, as the intersection of the time ranges of
all nodes and edges in the pathway must be computed and kept with
the pathway.

When using the temporal_tables extension, each node or edge, e.g.
VM, has two tables, one for the current snapshot and one for the
history. We create a view, e.g., VM__historical, which is the union
of these two tables. To evaluate a timeslice query with time
constraint

AT ‘2017-02-15 10:00:00’
only requires adding the following predicate to the Select and
Extend queries:

H.sys_period @> ‘2017-02-15 10:00:00’::timestamptz

6. Application and Evaluation
We have been loading data sets into Nepal-structured databases for
topology data from two different sources. The first is a virtualized
network service, with about 2,000 nodes and 11,000 edges in the
current snapshot. The second is a legacy network topology used
for service path applications with about 1.6 million nodes and 7.1
million edges. Both databases are loaded into a historical database,
with a two-month history, and both contain nodes with structured
data.

We developed a collection of queries on these data sets. For the
virtualized network service, we developed four example queries
based on the network model in Figure 2. Two of the queries are
“vertical”: a top-down navigation query (from VNF to Host) a
bottom-up query (from Host to VNF) via HostedOn edges (the
difference is whether the node at the start vs. the end of the RPE is
an anchor). The other two queries perform “horizontal” navigation.
The first of the horizontal queries one which navigates from Host
to Host via physical Connects edges (through switches and routers),
and the second navigates from VM to VM through virtual Connects
edges (through networks, virtual routers, and VMs). The results are
shown in Table 1.

Type # paths Time (snap) Time (hist)

Top-down 19.5 .058 sec. .073 sec.

Bottom-up 2.3 .061 .072

VM-VM (4) 215.9 .184 .206

Host-Host (4) 18.5 .067 .081

Host-Host (6) 561.7 .67 .68

Table 1. Query response times, virtualized service graph.

For each query type, we executed 50 instances and report the
average number of paths returned, and the average execution time
in the current snapshot and in the full history (there are only 33
distinct VNFs so we evaluated only 33 queries instances for top-
down). We avoided instances that result in zero paths, as they
tended to have a significantly lower response time. The horizontal
queries are normally limited to length-4 paths, but we tried a length-
6 Host-Host path query to test scaling. The schema has 12 edge
classes and 54 node classes. The full history is 6% larger than the
current snapshot database. We measured the execution time as
starting from when the first query was submitted to when the final
paths table is completed.

The regular queries that an interactive application would make
execute in less than 1/10 second, except for VM-VM which
executes in .206 seconds on the full history. These response times
are within the acceptable range for interactive applications.
Queries on the full history are only moderately slower than the
queries on the current snapshot.

We expanded the number of hops allowed for the Host-Host path
query by two, as paths in the Host-level topology have even
numbers of hops. The cost of these queries is significantly higher,
as very large numbers of paths must be explored.

These queries, as written, return very large numbers of paths. The
issue is that the RPE is very simple, essentially
Host(name=’ src ’)->[Connects()]{1,6}->
Host(name=’ tgt’)
A properly written query uses interconnection topology constraints
to prune out improper paths. A simple proxy is to limit the path
length to 4.

For the legacy topology, we developed a forwards service path
query, a reverse service path query (both ‘horizontal’), a top-down
vertical query, and a bottom-up vertical query. The horizontal
queries are of length 4 and the vertical queries are of length 3. We
execute each query on 50 instances, again avoiding instances that
return zero paths, and report the average number of paths returned
and the average execution time on the snapshot and full history
graphs. The full history graph is 16% larger than the snapshot
graph. The results are shown in Table 2.

Type # paths Time (snap) Time (hist)

Service path 32.9 .038 sec. .040 sec.

Reverse path 391,000 9.844 9.520

Top-down 4.4 .029 .039

Bottom-up

<partitioned>

73.18 .672

.049

.772

.059

Table 2. Query response times, legacy topology.

The queries that are executed in the “forwards” direction (with the
anchor at the start of the RPE) execute within 1/10 second, which
is acceptable for interactive applications. The reverse service path
query returns a huge number of results, and would be used for
deeper mining queries – in which case a response time under 10
seconds is acceptable. Queries on the full history graph are
moderately slower than on the snapshot graph.

A disappointing result is the high response time for the bottom-up
query, which would often be used in an interactive manner. An
examination of the results shows that 34 of the 50 samples have a
response time under .06 seconds, while the remaining 16 samples
have a response time of 2 to 4 seconds. Further investigation
showed that the slow samples encounter nodes with very large
numbers of incoming edges, almost all of which are irrelevant to
the query.

The legacy graph was supplied as a collection of nodes and edges
with type_indicators – the class(es) of the node or edge. Nodes
could have multiple type indicators, but edges have a single type
indicator. We loaded the legacy topology as provided, with one
node class and one edge class. The problem with evaluating the
bottom-up query made us reconsider the legacy graph model. We
created 66 subclasses, one for each possible edge type_indicator
value, and loaded a graph from the most recent day’s data. In the
relational implementation, each edge class is loaded into a separate
table. We evaluated the two slowest queries on the legacy graph:

• Reverse service path: average of 8.390 sec.
• Bottom up: average of .049 sec.

The reverse service path query becomes moderately faster, while
the bottom up query becomes much faster – fast enough for
interactive applications. Both queries benefitted from the
automatic elimination of many useless edges from the navigation
joins. However the reverse service path query naturally encounters
a very high fanout due to relevant edges, so the performance
improvement is limited.

6.1 Summary
Our experiments demonstrate the usability of Nepal for computing
paths on communication network topology graphs. While the
current implementation is still undergoing a significant
optimization effort, we were able to execute common user-
suggested path navigation queries with acceptable response times.
These databases are currently in use for developing troubleshooting
and Service Quality Management application prototypes.

Our approach of strongly-typed nodes and edges with subclasses
aided our experimental development in several ways. For one,
strong typing and uniqueness constraints in the Nepal schema
prevented us from loading garbage data into the graphs, enabling
early debugging. By contrast, common property-graph systems
will let you load garbage without any warnings. For another, the
Nepal class system enables the simple expression of the traversal
atoms, streamlining query development. Finally, the class system
enables a natural partitioning of nodes and edges – in our relational
implementation, we used separate a table for each class. This

partitioning can lead to significant performance improvements, as
is the case with the legacy bottom-up query.

The relational implementation of Nepal has several attractive
features. For one, graph data can be readily mixed with relational
data, and paths can be post-processed using powerful languages
such as PostreSQL. For another, the relational data can be profiled
to identify trends and data quality problems.

Using the temporal_table extension to Postgres has been highly
effective. While we are storing 60 days of graph snapshots, the
space overhead is only 16% for the large legacy graph – as opposed
to 5,900% for the conventional approach of storing 60 separate
graphs. The transaction-time tables also allow for temporal
profiling which can reveal patterns of network inventory
maintenance.

7. Related Works
Graph databases have been studied extensively by different
researchers [3], and many query languages for graph databases
were proposed during the last decades, (see a tutorial by Wood [34]
on the subject). This includes query languages for semi-structured
databases such as UnQL [6], Lorel [1] and a flexible pattern
matching of graph queries to semi-structured data [12]. XQuery6
and XPath7 were developed as query languages for XML. The TAX
tree algebra for XML [13], was developed in the Timber [14]
project. SPARQL8 is a query language for Linked Data. TRIPLE
[30] is a rule-based query language for RDF, based on Horn logic
and F-Logic. Regular Path Query (RPQ) languages have been
proposed (see [2][34] for a survey), but the regular expressions are
on the edge labels.

The Cypher9 query language is a native graph query language of
the Neo4j graph database system. Gremlin10 is a query language for
graph databases that implement Blueprints. Such query languages,
however, are not well adapted to the type of path retrieval we
present in this paper or for troubleshooting in communication
networks.

Of the open-source languages, Cypher is the most similar to Nepal
among the above languages. It uses ordinary variables for nodes
and edges, and allows specifying ‘named paths’ which are like path
variables. However, the ordinary variables are unsuitable for
regular path expressions, e.g., for capturing
[HostedOn()|ConnectedTo()]{1,4} in a variable, the variable
should accept sequences of 1–4 edges. The named paths on the
other hand, are not ordinary variables and cannot be used in a join
of paths or to hold the result of a regular path expression. In Cypher
this is not a problem because it neither supports regular path
expressions (it only uses regular expressions for attribute values)
nor processing of sets of paths. So, Cypher is limited in its ability
to extract and process paths of varying length.

A path-based query language for biological networks has been
presented in [21], but unlike this work, they do not allow complex
conditions on paths or manipulation of sets of paths. Another path-
based query language has been described in [8], but they extract
paths and use them to create complex graph structures. They do not

6 http://www.w3.org/TR/xquery/
7 http://www.w3.org/TR/xpath/
8 http://www.w3.org/TR/rdf-sparql-query/
9 http://neo4j.com/developer/cypher/
10 https://github.com/tinkerpop/gremlin/wiki
11https://blogs.technet.microsoft.com/dataplatforminsider/2017/04

/20/graph-data-processing-with-sql-server-2017/

consider paths as first-class-citizens of the language. Microsoft has
incorporated a limited form of RPQ in SQL Server11.

PGQL [25][29] is a property graph query language developed by
Oracle which supports regular path expressions over both nodes
and edges and supports variables that range over path sets. As such,
PGQL is similar in its treatment of paths and path variables to
Nepal. Papers describing PGQL and Nepal were published
concurrently [18][25]. However the Nepal path matching syntax
treats nodes and edges symmetrically, has strongly typed
nodes/edges with complex data types, class inheritance and
polymorphism, and supports sophisticated temporal queries.

Several recent works [5][9][16] have found that relational
databases are competitive with specialized graph engines. A recent
graph database “shootout”12 found that Postgres has better
performance than several open-source graph databases (but is
harder to write graph queries). In one approach, the property graph
is “shredded” into wide tables with every possible property
[4][17][33].

A strongly typed graph can be stored in a collection of tables, one
for every node and edge class [22]. This approach has been
disparaged as a “join bomb”13, but it works well in practice. Nepal
extends the approach in [22] with complex data and class
hierarchies on the nodes and edges. SLQ [35] enhances graphs with
approximate ontologies. OrientDB14 has incorporated a graph
database layer on their document store.

A body of analytical work exists on temporal graphs, e.g. [11].
Khurana and Deshpande [19] describe an efficient system for
materializing a past state of a graph using snapshots and deltas.
However the entire graph must be materialized even if only a small
portion is queried. Campos et al. [7] propose extensions to Cypher
for temporal graph queries. Huang et al. [10] describe a bolt-on to
Neo4J which allows versioning of properties in nodes, and
Rodriguez [28] describes a bolt-on for the Tinkerpop stack which
allows property versioning. Robinson [27] describes how temporal
graphs can be constructed with a multiplicity of nodes and edges
for various versions. In Nepal, we have implemented a full
temporal graph database which supports sophisticated temporal
graph queries and in a transparent manner.

A preliminary description of Nepal appeared in [18], and Nepal was
demo’ed in [15]. For this paper we present a detailed description
of Nepal’s motivating application; in addition we have revised the
language constructs and the algebra, developed strongly-typed
concepts and temporal support, and have developed a retargetable
query system.

8. Conclusions
In this paper, we describe the inventory database requirements
needed to support operations management and troubleshooting
over dynamic network inventories of a virtualized network
infrastructure in AT&T’s ECOMP [26] (now merged into ONAP).
Our motivation has been to support service path troubleshooting,
so we made pathways in the graph a first-class citizen in our
language and algebra. Tosca is the standard ONAP modeling

12 https://www.experoinc.com/post/encore-graph-db-shootout-
presentation-for-austin-data-geeks

13 https://neo4j.com/blog/demining-the-join-bomb-with-graph-
queries/
14 http://orientdb.com/orientdb/

language; Nepal enables TOSCA-based model-driven querying of
the complex collection of inventory entities and relationships
through strongly-typed concepts and concept components.
Troubleshooting needs access to in-the-past states of the graph,
which Nepal supports with timeslice and time-range queries. Our
implementation of Nepal has a query-generation architecture,
creating queries in the choice of target language (currently Gremlin
or PostgreSQL) from an intermediate form of a DAG of database
operators.

Although Nepal is already a highly effective graph search and
exploration system, there are many avenues of future research.
These include optimization of RPE evaluation, pathway joins;
context-dependent RPE evaluation (e.g. routing tables);
aggregation and data exploration queries on pathway sets; and the
development of Nepal as a data integration platform.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel query language for semistructured data.
International journal on digital libraries, 1(1):68-88, 1997.

[2] Angles et al. Foundations of Modern Query Languages for
Graph Databases, CoRR, abs/1610.06264, 2016

[3] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1:1-1:39, 2008.

[4] Borea at al., Building an efficient RDF store over a relational
database. Proc. SIGMOD 2013.

[5] Y. Bu et al. Pregelix: Big(ger) Graph Analytics on a
Dataflow Engine. Proc. VLDB vol. 8, no. 2, 2015.

[6] P. Buneman, M. Fernandez, and D. Suciu. UnQL: A query
language and algebra for semistructured data based on
structural recursion. The VLDB Journal, 9(1):76-110, Mar.
2000.

[7] A. Campos, J. Mozzino, A. Vaisman. Toward Temporal
Graph Databases. Alberto Mendelzon Workshop on
fouindations of data management, 2016.

[8] A. Dries, S. Nijssen, and L. De Raedt. A query language for
analyzing networks. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management,
CIKM '09, pages 485-494, 2009.

[9] J. Fan, A.G.S. Raj, J.M. Patel. The Case Against Specialized
Graph Analytics Engines, CIDR 2015.

[10] H. Huang et al. TGraph: A Temporal Graph Data
Management System. CIKM 2016.

[11] S. Huang, A. Q. Fu, R. Liu. Minimum Spanning Trees in
Temporal Graphs. Proc. SIGMOD 2015.

[12] Y. Kanza and Y. Sagiv. Flexible queries over semistructured
data. In Proceedings of the Twentieth ACM Symposium on
Principles of Database Systems, PODS '01, pages 40-51,
2001.

[13] H. Jagadish, L. V. Lakshmanan, D. Srivastava, and K.
Thompson. TAX: A tree algebra for XML. In G. Ghelli and
G. Grahne, editors, Database Programming Languages,
volume 2397 of Lecture Notes in Computer Science, pages
149-164. Springer Berlin Heidelberg, 2002.

[14] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel, D.
Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER:
A native XML database. The VLDB Journal, 11(4):274-291,
Dec. 2002.

[15] P. Jamkhedkar et al. Virtualized Network Service Topology
Exploration Using Nepal. SIGMOD 2017.

[16] A. Jindal, S. Madden, M. Castellanos, M. Hsu. Graph
Analytics using the Vertica Relational Database. IEEE
BigData 2015.

[17] Al. Jindal, S. Madden. GraphiQL: A Graph Intuitive
Language for Relational Databases. IEEE BigData 2014.

[18] T. Johnson, Y. Kanza, L.V.S. Lakshmanan, V. Shkapenyuk.
Nepal: A Path Query Language for Time-Travel Queries
over Communication-Network Inventories. Proc. Network
Data Analytics Workshop, 2016.

[19] U. Khurana, A. Deshpande. Efficient Snapshot Retrieval
over Historical Graph Data. Proc. ICDE 2013.

[20] K. Kirkpatrick. Software-defined networking.
Communications of the ACM, 56(9):16-19, 2013.

[21] U. Leser. A query language for biological networks.
Bioinformatics, 21(2):33-39, Jan. 2005.

[22] C. Lin, B. Mandel, Y. Papakonstantinou, M. Springer. Fast
In-Memory SQL Analytics on Typed Graphs. Proc. VLDB
vol. 10, no. 3, 2016.

[23] F. Lopes, M. Santos, R. Fidalgo, and S. Fernandes. Model-
driven networking: A novel approach for SDN applications
development. In IFIP/IEEE International Symposium on
Integrated Network Management (IM), pages 770-773. IEEE,
2015.

[24] Open Source ECOMP.
https://www.linuxfoundation.org/announcements/linux-
foundation-announces-merger-of-open-source-ecomp-and-
open-o%C2%A0to-form-new-open

[25] O. van Rest et al. PGQL, a Property Graph Query Language.
Proc. 4th Intl. Workshop on Graph Data Management
Esperiences and Systems (GRADES), 2016.

[26] Rice, C. ECOMP – the engine behind our software-centric
network. AT&T, 2016.
http://about.att.com/innovationblog/031716ecomp

[27] I. Robinson. Time-based Versioned Graphs, 2014.
http://iansrobinson.com/2014/05/13/time-based-versioned-
graphs/

[28] M. Rodriguez. Gremlin’s time Machine, 2016.
https://www.datastax.com/dev/blog/gremlins-time-machine

[29] M. Sevenich et al. Using Domain-Specific Languages for
Analytic Graph Databases. Proc. VLDB vol. 9, no. 13, 2016.

[30] M. Sintek and S. Decker. TRIPLE - a query, inference, and
transformation language for the semantic web. In The
Semantic Web-ISWC 2002, pages 364-378. Springer, 2002.

[31] R. Snodgrass, I. Ahn. Temporal Databases. IEEE Computer
19(9), 1986.

[32] D. Srivastava, L. Golab, R. Greer, T. Johnson, J. Seidel, V.
Shkapenyuk, O. Spatscheck, and J. Yates. Enabling real time
data analysis. PVLDB, 3(1):1-2, 2010.

[33] Sun et al., SQLGraph: An Efficient relational-based Property
Graph Store. Proc. SIGMOD 2015.

[34] P. T. Wood. Query languages for graph databases. SIGMOD
Rec., 41(1):50-60, Apr. 2012.

[35] S. Yang et al. SLQ: A User-friendly Graph Querying
System. Proc. SIGMOD 2014.

