A Graph Database for a Virtualized Network Infrastructure

Pramod Jamkhedkar Theodore Johnson Yaron Kanza
AT&T Labs - Research AT&T Labs - Research AT&T Labs - Research
pramod@research.att.com johnsont@research.att.com kanza@research.att.com
Aman Shaikh N. K. Shankaranarayanan Vladislav Shkapenyuk
AT&T Labs - Research AT&T Labs - Research AT&T Labs - Research
ashaikh@research.att.com shankar@research.att.com vshkap@research.att.com
ABSTRACT maintenance of AT&Ts networks and services. Claathhologies

Modern communication networks are large, dynanumpulex, and
increasingly use virtualized network infrastructur@o deploy,
maintain, and troubleshoot such networks, it iseetal to
understand how network elements — such as sersefit;hes,
virtual machines, and virtual network functionsre aonnected to
one another, and to be able to discover communitapaths
between them. For network maintenance applicatsunsh as
troubleshooting and service quality managemeist ditso essential
to understand how connections change over time,banable to
posetime-travel querieso retrieve information about past network
states. With the industry-wide move to SoftwareiDed Networks
and Virtualized Network Functions (VNFs) [26][24haintaining
these inventory and topology databases becometicaldssue.

In this paper, we explore the database requiremémtsthe
management and troubleshooting of network servisésy VNF
and SDN technologies. This work was initiatedhia tontext of
Open source ECOMP, which has been now merged ilNAFD
[24], the new industry-standard for managing nelwartomation.
We develop a graph-based layered network model isiglers
representing increasing levels of specificity, frgidFs to physical
hardware. We then describe the kinds of querigsired for
activities such as operations management and &shbbting.

These considerations have led us to develop Nepabdel-driven
graph database system to represent and reasoneiwark service
topology and data flows within the network. Nepak several
features making it particularly applicable for qgirg inventory:

Nepal has a strongly-typed but flexible schemaugpsrt model-
driven networking; it makes graph paths a firssslabject in its
query system; it has sophisticated support foheygiast queries;
and it works as a layer over one or more underlgiagbases.

We demonstrate the capabilities of Nepal by exasglscuss its
model-driven query capabilities, and implementataetails on
Gremlin and Postgres. We illustrate how path qsezan simplify
the extraction of information from a dynamic invenytof a multi-

layer network and can be used for troubleshooting.

1. Introduction

AT&T's Domain 2.0 program (D2) aims to leverage udo
technologies, software defined networks (SDN), aredwork
virtualization to offer network services with sifjpant levels of
automation [24]. This effort involves a network ragement
platform (ECOMP, now merged into ONAP) responsilibe
automated creation, management, troubleshooting,d an
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and SDN introduce unprecedented levels of cordymiamism, and
complexity in managing networks. Maintaining andeying a
network topology inventory is essential in softwadefined

networking with virtualized network infrastructurevhere the
network control is directly programmable and thedentying

infrastructure is virtualized and abstracted froetwork services
and functions [20]. In particular, an inventory ctatilitate the
creation of SDN applications using modeling langgguch as
Tosca and Yang, to enable model-driven network®8j.[

The components within cloud-based network can iratiieir role
from an abstract high-level network function sustadirewall to a
concrete network element such as a physical netidgtface.
Furthermore, network elements can belong to a cexnpl
classification hierarchy. The network databaseesystnust allow
for the categorization and labeling of these eldmeso that
network operators and management systems can godrypdate
the network inventory at the proper level of alettom - without
requiring knowledge and manipulation of unnecessetwork
details.

The communication channels along a topology ofraaienected
network components form the central constructs owhich

network management tasks are carried out, e.g.onkteervice
provisioning, configuration of network elementstascaling, and
troubleshooting. Queries such as: “Can network efemA and B
communicate?”, “What is the shortest path from eeti to B to
route data packets?”, “Which network services shéne

communication link between elements B and C?”, &te.critical
for such network management tasks. For programmadtieork

management and tooling, it must be possible toyeashstruct
these queries and execute them in an efficient srann

Another key requirement for troubleshooting a nekwis the
ability to “look into the past”, and reason ovee #wvents and state
of the network to fix a problem. Network operatoften need to
go back in time to the point at which network eveaturred to
troubleshoot a problem. Troubleshooting requiregraderstanding
of the state of the network elements (includingrigting tables,
configuration parameters and alarms), their conoestwith other
elements, and the exact paths along which the midt&ets and
control information traveled in order to correlated localize the
problem at a specific instant of time in the p&strthermore, these
queries could be posed over a time interval irptet to understand
how the network evolved over time - including theaeges the
network elements’ state and the topology of thevoek.

Finally, most large-scale complex networks, suchttes one
managed by AT&T, include network information storéal
different types of inventories. It may be impraatito assume that
the complete network inventory and topology is etioin a single
unified database. Fragmented sources of informaliimit the



ability to seamlessly reason over multiple netwiorkentories for
management of services deployed over differentsyff@metworks
or geographical regions. Hence, the network qugstesn must be
flexible enough to operate over different data iteees storing
different parts of the network.

Current database systems are unable to support fleasures
required for cloud-based virtual networks, as dised in Section
7. To utilize an inventory it is essential to béeato query the data
and extract information about connections betwemtes. This is
not an easy task when the network is large and tcaned [32].
Moreover, in typical graph query languages, querieformulated
by defining a graph pattern that should be mat¢bede database,
while the goal of most network inventory queriewisind paths in
the graph, often without knowing the length of #hesaths.
Existing graph query languages are also not dedidaetime-

travel querieswhere the temporal aspect is taken into accoont, s

that a query could refer to a time in the past.

Nepal (NEtwork PAth query Language) is a graph luksga system
for maintaining an inventory and topology of compldynamic
cloud-based networks to support automated netwakagement
applications. Nepal incorporates four key novetdess:

1) Schema with multiple abstraction mechanismisepal takes
advantage of entity (and relationship) generaliratit query time,
enabling access to complex inventory data in a lgimpanner,
without requiring the user to know the network dstaeyond what
is necessary.

2) Paths as first class citizens of the languadetwork queries are
posed over a virtual set of paths, and they retpatlss. Thus, the
Nepal query language is closed under compositiorableng
complex path queries. Achieving this property ihestcommon
graph languages is difficult because they eithirnesubgraphs or
sets of tuples.

3) Time travel queriesNepal is a temporal database labeling each

node and edge with timestamp intervals. This lalgelallows
network queries to be posed over past temporalsbioap or time
intervals.

4) Retargetable architectureNepal queries can be translated to
target different database systems such as GremIBQd.. This
feature allows Nepal to be used for reasoning dragmented
network data stored in different types systems.

2. Automated Management of Cloud-based
Virtualized Network | nfrastructure

The ability to create network services by stitchimgether centrally
controlled virtualized networks functions on cloydatforms
enables the management of network functions in wonsated
manner. A&AT took the initiative to build an autoraed network
management platform called ECOMP for managing cloasked
network services, and used it as the basis for ONAFey
requirement for this platform is a graph-based oétwdatabase
management system for maintaining network inventopology
and network states for network service orchesmatio
troubleshooting, and other network management tasks

2.1 Cloud-based Networks

Recent advances in network function virtualizatigNFV),
combined with software-defined networking (SDN)y&anabled

1 http:/lwww.3gpp.org/technologies/keywords-acronii8-the-
evolved-packet-core

network service providers to deploy, manage andbiashoot
network services with increasing levels of autoorati

NFV allows primary network functions such as swiéshrouters,

gateways, firewalls, and also complex network fioms, such as
the evolved packet core(EPC) in mobility networks, to be
virtualized and implemented as a collection of uait machines
(VMs) deployed over cloud infrastructure. SDN tealogies allow

remote configuration of these virtualized netwotkdtions via

standard protocols.

When a network function is moved from a physicgliementation
to a virtualized one, it often results in a subB#rincrease in
complexity of the function. The physical to virtualetwork
function transition is seldom a one to one mapndst cases, what
was earlier a single physical box now gets replaogdens of
interconnected VMSs running over a physical netwatkic within
a data center. The result of such virtualizationeifvork functions
is called virtualized network function (or VNF).

HostedOn
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Figure 1. A simplified model of virtualized cloud-based
network graph topology

A VNF typically consists of a number of subcompasecalled
virtual function components (VFCs). Each VFC carvissved as
an indivisible subcomponent of the VNF which rumsasingle
VM. The VFCs, each running within a VM, collectiyeimplement
the VNF by communicating over the virtual networdsfined
within the cloud. A virtual network provides fulloonectivity
among all VMs that are connected to it, and alswiges isolation
from other VMs and virtual networks in the cloudrtval routers
enable connectivity among virtual networks. VMstual networks
and virtual routers, together constitute the virtudrastructure
within which VNFs operate. The virtual connectivitfrastructure
is also called the overlay network.

Host

The virtualized infrastructure is instantiated on physical
infrastructure fabric. This includes physical sesyephysical
switches and routers, which provide the underlyplyysical
connectivity for the virtual machines to communécatith each
other. The network formed by the physical infrastuwe is also
called the underlay network.

2.2 The ONAP Platform

The complexity introduced by virtualization of nek functions

is a tradeoff for automation in management of thesetions

including deployment, configuration, auto-scalingand

troubleshooting. This enables AT&T to deploy andnage

network services in an automated manner, incluthegesources
(i.e. network, cloud and infrastructure) which cosg that service.
Towards this goal, A&AT initiated the developmeritaonetwork



management platform called ONAP, for design, cosagind life-
cycle management of virtualized network services.

The ONAP platform consists of five key subsystems:
1. Service Design and Creation (SDC):

This component is a subsystem responsible for desigd
definition of models of AT&T services and resourcehich
comprise those services. ONAP follows a model driapproach
of services and resources described using e.g. FOS®ich
provides a standard vocabulary for different ONA#nponents,
and enables re-usability of ONAP models.

2. Policy:

Policies are statements of intent, expressihgtis to be achieved
by a system under a given context (or a set of itiong). ONAP
includes a dedicated component responsible focpdholicies are
expressed in policy language such as DfootsXACMLS3, and
control the network elements for responding toufa$, auto-
scaling, and so on.

3. Master Service Orchestrator (MSO):

The MSO’s primary function is the automation of \éee
instantiation based on the templates and servidinitittns
provided by ASDC. The MSO executes well-defineccpases for
each of these tasks, which are defined via formathine readable
workflows or configuration templates, by collabangt with
various controllers for network, infrastructure applications.

4. Active and Available Inventory (A&AI):

A&AI keeps an inventory of virtualized resourcesnsces, and
customer subscriptions — including all artifactagmted by the
MSO. In addition, A&AI stores the relationshipstween these
entities, enabling navigation queries. Local resewrchestrators
typically maintain their own inventories.

5. Data Collection Analytics and Events (DCAE):

The DCAE platform manages event information, ingcigdkey
performance indicators, events, usage and telepeitycollected
from the dynamic virtualized infrastructure. Thdommation is
subsequently fed to a collection of analytic fuoct performing
both offline and real time analysis of the datalédermine faults
and alarm conditions within AT&T network servicemda
infrastructure.

2.2.1 ONAP and Nepal

We are developing Nepal to support the kind of clemgueries
required for advanced network management applitsitidNepal is
designed to integrate data from A&Al and other imoey

databases to create a topology, maintain a histagiaph over the
topology, and enable the simple and efficient esgion of path
queries over these graphs.

2.3 Need for Path Calculationsin Cloud-
based Networks

Understanding and reasoning over the relationshipsng the
network elements is a key requirement for orchéetra
troubleshooting, analysis and other managemens tasthin a
network. The complexity of cloud-based networkskesathis
requirement more complex and more critical. Totbubugh this
complexity, we developed information organizingngiples. In

2 https://www.drools.org/

this section we introduce a layered network modetapture the
topology for virtualized network as shown in Figire

2.3.1 Layered Network Model

A network created only with physical elements csissiof
connections among various network elements suchoagpute
servers, switches and routers leads to a flat d¢gyol of
interconnected elements. It is over this flat togyl that data
packets are routed and communication channelsstablished.

A virtual, cloud-based network introduces a newetision to this
topology. The end points of communications areomgér physical
servers but VMs which run over the physical servéhese VMs
communicate via virtual networks and virtual rogtewhich are
virtual constructs running over a physical infrasture. As
explained earlier in Section 2.1, the physical mekelements only
provide a communication underlay fabric over which
communication fabric of virtual network infrastruot is created.
Hence a new virtualization layer needs to be intoed in the
network topology.

In Figure 2, the bottom two layers (i.e. the Phgkicayer and
Virtualization layer) represent the physical undgrl
communication network and the virtual overlay comination

network. Each of these layers have two types oésdegrtical and
horizontal. Horizontal edges form the paths of camitation

within a layer, e.g. VM to virtual router, server $witch, and so
on. The vertical edges capture HostedOn relatipsstd.g. a VM
executes on a server.
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Figure 2: Layered network model

The top two layers are service design layers. Avait service
consists of a set of interconnected VNFs. The VHfesstitched
together to form an end-to-end communication chisnfee the
network service. This service topology of intercected VNFs is
represented by the Service layer in our networkehdghd-to-end
high-level data flows and control flows for thewetk service are
described and represented at this layer.

As explained in Section 2.1, each VNF is divide ia number of
subcomponent VFCs which comprise the Logical Layéertical
edges between the Service and Logical layers italitee VFCs
that comprise a VNF. Each VFC is an indivisiblgwal network
component which runs within a single container &.VVertical
edges from the Logical to the Virtual layer captilrie mapping.

The upper two layers (Service and Logical) capthes service
components and their relationships. End-to-endicefevel data

3 http://docs.oasis-open.org/xacml/3.0/xacml-3.0zegpec-o0s-

en.html



and control flows can be defined over these tweerdsyduring
design time. The bottom two layers (i.e. Virtualiaa layer and
Physical layer) are defined during service deplaymk is only
after the service is instantiated over a virtuaivoek fabric that
elements at the Virtualization layers come intongeand are
mapped to the Service and Logical layers

Together, the layered network model allows for safen of
network relationships at various levels of abstomct Such a
separation provides several advantages: networkcssrcan be
queried at different levels of abstraction and gtarty, we can
reason about the relationship between abstract @mndical
elements, and we can map service paths at an ebéea.,
Logical) layer to service paths at a more conctetg., Physical)
layer.

2.3.2 Path Calculations within a Layered Network
Topology

A primary reason for storing network informationatopology is
to efficiently and easily reason over how contnodl @lata packets
move through the different elements of a netwogotogy. Such
reasoning is critical for various network manageméessks
including troubleshooting, optimization, placemestt;. This can
be achieved via exploring the network topology a®subsets of a
connected graph, but rather via network paths eggdlalong the
topology of the network. For this is the reasonp&ldreats paths
as the first-class citizens of the query language.

Given an inventory of a complex network expressed aetwork
topology, the following are the types of querieattheed to be
processed for network management tasks.

Calculating routes -A network configuration service might want
to know all possible paths between two VMs in ortbeletermine
the most efficient one to be configured. Such aprfition may
require the paths to pass through a set of roggessibly in a given
order) as a service constraint. A security managésystem might
want to know if any path exists between two netweléments
which bypass the firewalls. Troubleshooting servicfen requires
one to know if data flows for a given set of custéosnexperiencing
service quality issues share a common set of elesmehich may
be responsible for the issue.

Calculating induced paths -n a virtualized network system,
control and data flows are often expressed or knatthe service
design layers; understanding those paths at thealization or
physical layers is important for network managemeamsks.
Similarly, a network path at the virtualization éayvia virtual
network elements has an induced physical equivabatih via
physical elements. Determining an induced path dogiven
network path at a different layer includes caldatat the
corresponding network elements by traversing therkavertically,
and then calculating the induced path at that |afyer example, if
a service path includes VNFs 1, 2, and 3, detenginihe
corresponding induced path at the physical laydt, require to
calculate the physical servers over which the Viks and the
paths between those physical servers.

Calculating shared fate -When a network element fails, it affects
network services which depend on it. For exampgesivitch fails,
all the network paths passing through that switci ¥ail.
Similarly, if a physical server fails, all VMs ruimg on that server
fail, and subsequently the VNFs which those VMslengent. To
determine all the VMs, and VNFs affected by thdufai of a
physical server, one computes the vertical patim that server to
all the corresponding VNFs via the VMs and VFCsglthe upper
layers in the layered model.

Calculating service dependencies on physical infrasture —To
determine the footprint of a VNF at the Virtualipat layer (i.e. all
VMs implementing that VNF), and Physical layer.(aé physical
servers on which those VMs run) one calculatepétles along the
vertical connections. Such calculations are impurtdor
management of that VNFs virtual and physical resesir

History-based troubleshooting -Understanding the network
behavior at some point in the past is critical ttmubleshooting.
What was the network path taken at the time offélilare? What
was the physical and virtual footprint of a VNFdanow did it
evolve over time? Between timestamps t1 and t2¢chvhietwork
paths flowed through a given network element?

These are some of the questions for which answerseeded by
network operators in order to troubleshoot a pnoblelence, the
ability to query a network topology graph over was temporal
granularities is important in network management.the next
section, we describe the Nepal system which isgdesi for
expressing these queries as path patterns overagh-thased
network topology.

3. TheNepal System

While the A&AI component of ONAP (Section 2) stores

inventory, it was not designed to provide the céjieds needed to
service path calculations: model-driven entitiesl aglationships
with multiple abstractions, a path-oriented queagyduage, time
travel, and a retargetable architecture. We d@eeloNepal to
address these needs and provide a foundatiorofanler shooting,
service quality management, and operations managewithin

ONAP.

The Nepal system is designed to provide the cafiabiheeded for
service path calculations: model-driven entitiesl aglationships
with multiple abstractions, a path-oriented quegyduage, time
travel, and a retargetable architecture (the A&Amponent of
ONAP, Section 2, stores an inventory - one of savesed by
Nepal). Nepal supports these features and proad@sndation for
trouble shooting, service quality management, apeérations
management within ONAP.

In this section, we describe the Nepal query lagguend system.
We start with a discussion of the Nepal data model.

3.1 Architecture

We designed Nepal to be a shim layer between nktwor
applications and one or more database systems.alNep be
thought of as having three components, a schentarsys query
translator, and a graph data management system.

The schema system manages the Nepal schemas lfgesani
Section 3.2) for use by the query translator arel ghaph data
management system. This Nepal component provigtegcss for
translating data between input data representatitaitsve Nepal
representations, and target system (relationapesty graph) data
representations.

The query translator takes as input a Nepal quedycee or more
Nepal schemas and generates a Python progranssbasi queries
to one or more target databases. The code gemersyistem
attempts to execute as much of the query in thgetatatabase as
possible, primarily performing query sequence manamnt.
However the Python code will perform processingawatilable in
the target database(s), e.g. execute functiongrestent in the
target DBMS, and shipping partial results from target database
component to another.

We originally intended for Nepal to execute on wfpexisting
graph databases (e.g. A&Al, Section 2.2). Howekierneed for



temporal graph management and interaction with ipleltdata
sources (cloud management system, legacy systedhspeon) led
us to develop a graph database management laykis |dyer
translates inserts, deletes, and updates intatleztions of inserts,
deletes, and updates in the target (relationalpeaty graph)
database. Several data sources provide periodfishots of their
contents rather than update streams, so the grapababe
management layer also provides an update-by-snapshdce.

3.2 Data Modd Basics

Nepal is a graph based database system, whichasugal fit for
capturing the topology of a communication netwdshklike most
graph database languages (see Secfiwnor! Reference source
not found.), which use the property graph model, all noded an
edges in Nepal have a strongly typed schema — propipate
choice for an automation-friendly network inventatgtabase. In
this section we describe some Nepal modeling cdeaegressary
for understanding the Nepal language.

The nodes in a Nepal graph represent differentstygfenetwork
entities, and the edges capture various typedatforships among
these entities. Entities in a cloud-based virtwainetwork may
include physical servers (or hosts), switches, et virtual
machines (VMs), virtual network functions (VNFs)jrtual

function components (VFCs), virtual routers, an@so

The entities can have various relationships: H@tetk.g. a VNF
is HostedOn a VFC, which is HostedOn a VM, etcon@ectedTo
(a server is ConnectedTo a switch, which is Coratdat a Router,
etc.) and so on.

These entities and relationships must be commwedcatnong the
many organizations which query and update the itorgnthe
master service orchestrator, application and resoorchestrators,
and network engineers performing maintenance
troubleshooting, and so on. The entities and icglahips have
specific collections of fields which the applicatidogic of the
various customers of the inventory graph relies\&e have found
that using a traditional schema-free graph databased on the
property graph model requires extensive applicagide logic to
ensure automation-friendly database schemas arstrauris.

The entities and relationships stored in Nepal hewenplex
relationships to each other. For example, thezar@any kinds of
VNFs (DNS, firewall, etc.) and many kinds of VF@sdxies, web
servers), many kinds of virtualization containefistgal machines,
Docker containers), and so on. Forcing this comiglaipon the
query writer would be overwhelming, so Nepal useslastraction
mechanism which we calitrengly-typed concept® generalize
disparate nodes and edges. In this paper, wéctasir discussion
to node and edge class hierarchies.

All nodes and edges in a Nepal schema are of afispelass and
are part of a single-rooted class hierarchy. B&se classlefines
properties of every Nepal database entry, andwastibclasses:

and

uses TOSCA as its standard modeling language, $worie
topology sources are described using TOSCA andefirer
compatibility is needed. However, edge hierarche® a
convenient modeling tool. So, for example, thene loe a Vertical
class derived from Edge, and from which all otherti¢al edges
are derived: Vertical:ComposedOf, Vertical:HostedQmvVM,
Vertical:HostedOn:OnServer, and so on.

As with the Node hierarchy, the Edge hierarchyvedidhe system
modeler to add relevant information as needed.ekample, there
might be a base ConnectedTo edge that describesigoitation
connections. However, when a server is Connectedsiatch, we
need to describe the server and switch interfatc#seaonnection.
When a VM is ConnectedTo a network, we need tordesthe IP
address that the VM exposes to the network. So
ConnectedTo:ServerSwitch edge extends the Conrleztthe by
adding fields Serverinterface and Switchinterfacehilev
ConnectedTo:VmRouter extends ConnectedTo by adéleld
IpAddress.

The Nepal Schema language is derived from the Teshama
language (data_types, node_types, capability typakdwing
automatic translation from Tosca to a Nepal scheniosca
contains a graph schema language — edges are fiigpaipes”
and node types specify the class and number otapabilities
(edges) that can enter or leave the node. Nepalthss system to
define graph schemas, a simple example of whickh@wvn in
Figure 3.

G

77 g,

>
_~"composedOr

—
ch

’?‘Vhysicnl,connecl

e
( physical_swit
—

,/ LY
< VM\%s\mm:le\gk:connecl\'imml,connecl \
» = \
——— 3

s,
! SN
1\ physical_connect)physical_connect hostedOn (virtual_ntwk_connect )virtual_ntwk_connect "
| \
| / s \
. ~< 1
\ physical_scrver o physical_conncet ( Vi i.1unl,nc|wo.k>w irtual_ntwk_connect ¢
\ /
S — —=7 ;
~x s
. - "
. ~ S
A — b .
( physical_node ) Qinlml,node )
b _

hostedOn
! ~

= ' Fne

N i ~
e | RN
vertical contains
S I -
~ I .
¥, | -
Tdge

Figure 3. Simple network underlay/overlay graph schema.

The dashed lines indicate parent-child inheritamdgle the solid
lines among the nodes indicate allowed edges. MNbg
composed_of and hosted_on are both derived froricéérso that
one can traverse from a VNF to its physical serbgréollowing
Vertical edges. However one cannot directly link/HF to a

virtual_¢

NodeandEdge,which are the root classes of all nodes and edges, physical_server as no such edge is permitted bgréqeh schema.

respectively. The subclass of a parent class Iha§the fields of
the parent class, and optionally additional field&Vith this
mechanism, one can define a generic network e(gitgh as a
VNF), with subclasses that add additional infororatas needed:
VNF:DNS, VNF:Firewall, and so on.

Edges also have a class hierarchy. While thisifeas unusual for
graph databases, we were influenced by the OASISCR
standard for defining the topology of cloud-based/ices. ONAP

4 http://docs.oasis-open.org/tosca

3.2.1 Structured Data

The entities in a network graph typically contairsignificant

amount of structured data. For example, a Routghtncontain a
routing table, which is a list of routingTableEesientries of the
form:

(IPAddress address, Int mask, String interface)

Then a routing table in a Router node can be ezpdeas



List[routingTableEntry] routingTable

The Nepal schema language uses the extended dgseribed by
the node_types and data_types in TOSCA (the stdnO&AP
modeling language). A brief description of theetla system is
that

¢« A data_types section describes the composite gpést
available to the nodes and edges in the schema.

« A datatype can have fields that are of other aefidata
types. The resulting composition DAG must be acycl

« A field can be a container type, containing fietifsa
particular type. The available containers are $ist, and
map.

*« Nodes, edges, and data types all support inheetanc
Inheritance implies the addition of fields and dosisits
to the parent class, and allows substitution dfileckss
for a parent class.

3.3 Language Syntax and Semantics

Nepal queries are centered pathways which are first-class
entities (the word “path” is overloaded in the it of
networking). A pathway is an alternating sequeniceodes and
edges which always start and end with a nagdes,, ..., @1, k. A
single noden is a pathway, and a single edge has implicit natles
its endpointse: is shorthand fon, e, n'.

Pathways are specified usimggular pathway expression®r
RPEs. The atoms of an RPE specify the properfidsemnodes or
edges that satisfy the atom. An atom is spechied class name,
and any additional constraints on the fields of ibeords of that
class. For example, all VMs with status “Greeré apecified by
the atom

VM(status='Green’)

This atom is satisfied by all records of class \Gvipf a (possibly
transitive) subclass of VM. Atoms are stronglydgip all fields
referenced in the atom predicate must be fieldthefindicated
class.

The name portion of an atom (e.g., VM) refers &irangly typed
concept as defined in a Nepal schema (if the nantigecsubclass
is unique, the inheritance chain can be discardéd)e schema
might have two different kinds of VMs, VM:VMWare dn
VM:OnMetal. The atom VM(...") refers to both VMWaredes
and OnMetal nodes, but only the VM fields can bierenced.
Similarly VM might be subclassed from Containerthasibling

Container:Docker. The atom VM(...) refers only toosk

Containers that are subclassed into VM, and doesefier to any
Docker container.

The subclassing system determines whether an atamade or an
edge. VM is a node because it is (transitivelctassed from
Node, while a HostedOn atom is an edge becauséiansitively)
subclassed from Edge.

A regular pathway expression is defined recurgiviel a manner
similar to conventional regular expressions.

¢ Anode or edge atom is an RPE.
e If r1 andr2 are RPEs, then the concatenatib#er2 is
an RPE.
e If r1 andr2 are RPEs, then the disjunctiaii[(2) is an
RPE.
« If ris an RPE and < j are positive integers, then the
repetition f]{i,j} is an RPE.
We have already defined how pathways satisfy atcsnswe
proceed to define pathway satisfaction of the OotfRPE

constructions. Lgb be a pathwawpy,e, ..., N1, ..., &1, k. Then
p matchesrl->r2 if one of the following four conditions are
satisfied:

e ne, ... matchesl andni+1, ..., @1, Nk matches2.
¢ ne, ...n, matchesl and ¢ ..., &1, Nk matches2.

e ne, ...n, matches1 and m1, ..., &1, nk matches?2.
¢ ne, ... matchesl and @1, ..., &1, nk matches2.

This definition of catenation allows us to easibesify pathways
via mixtures of edge and node traversals. Thikheilillustrated in
the first two examples of Section 3.4, in which hpetys are
specified using RPEs that mix Node and Edge atoms.

Pathwayp satisfies the disjunctiomXJr2) if it satisfiesrl orr2 (or
both). Pathwayp satisfies f]{i,j} if it satisfiesr->r->...->r where
the repetition occurs betweeandj times, inclusive.

In comparison to a Regular Path Query (RPQ) [2][B#pal RPEs
refer to both nodes and edge, with predicates @nfields. PGQL
[25] allows expressions over both nodes and edgegreats them
separately. Nepal treats nodes and edges symailtrighich can
greatly simplify complex expressions.

In Nepal we make several restrictions on the RBEsdan be used
to constrain pathways.

e AlIRPEs must béength-limited This can be done either
in the RPE (finite upper bounds on the repetititotks)
or with a constraint on the maximum length of the
pathway.

* All RPEs must have at least oaachor— an atom that
has a small number of records that satisfy it. For
example, VM() is (probably) not an anchor, but
VM(id=55) is. The meaning of “small’ depends on
available system resources. In join queries, ahan
can be “imported” from a joined path.

Anchored, length-limited RPEs allow Nepal to efiaily find
pathways in a large graph database. The requirtahegrthe query
planner be able to find an anchor causes our imgi¢ation to
reject RPEs that involve only repetition blocks twit0. For
example,

[VNF()0,4}->[Vertical()]{0,4}
does not have an anchor because the empty paifiesathe RPE.
These RPEs are not common and are likely malforidediever

RPE transformations can be applied to create apdRPES, with
the empty path added for completion.

3.4 Language Featureswith Examples
A Nepal query has the form

Retrieve  <list of pathway variables>
From <list of <source, variable> pairs>
Where <constraints on the pathway variables>

The source is an unmaterialized view of pathways igraph
database, and the view PATHS is the set of all vpayk.
Additional views can be defined, but we do not exgithis aspect
of Nepal in this paper. Each pathway variable mhste a
MATCHES predicate (unless one is implicit in thetpeay view
source).

The Nepal query language syntax is an SQL-like asynt A
significant difference between SQL and Nepal ig thhile SQL
range variables are collections of records, Nepaje variables are
collections of pathways.



For our first example, suppose a network engineeds to replace
the server with id 232425, and wants to determlh¥MFs that
will be affected. If the network engineer knowatthall VNFs are
implemented through a collection of VFCs, and &I0$ are hosted
on VMs, which are executed on hosts, then the m&hengineer
can execute the following query:
Retrieve P From PATHS P WHERE P MATCHES
VNF()->VFC()->VM()->Host(id=23245)
The hierarchical nature of the Nepal schema inesldte network
engineer from many details: the exact type of th&\VVWFC, VM
and Host nodes. However, the exact sequence déimgmtation
must be known — perhaps a VFC is not virtualizedirams directly
on a host. If all implementation edges are sukelagdirectly or
transitively) from Vertical, a simpler and more geo query can
be written:

Retrieve P From PATHS P WHERE P MATCHES
VNF()->[Vertical()[{1,6}->Host(id=23245)

Join queries can be expressed with the use of pagtfiwnctions.

The most basic functions aseurcéP) andtargei(P), which return

the source and target nodes of P, respectivelye dlhss of
source(P) / target(P) is the least common ancettll classes that
an analysis of P's MATCHES expression indicates banthe

source / target of P. For example, the followisionplified) query

finds the physical communication path between tlst ithat

implements the VNF with id 123 and the VNF with2ig4:

Retrieve Phys
From PATHS D1, PATHS D2, PATHS Phys
Where
D1 MATCHES VNF(id=123)->Vertical(){1,6}->Host()
And D2 MATCHES VNF(id=234)->Vertical(){1,6}-
>Host()
And Phys MATCHES ConnectsTo(){1,8}
And source(Phys)=target(D1)
And target(Phys)=target(D2)
While range variable Phys does not have explichars, they are
provided by the joins against the anchored rangebias D1 and
D2.

Additional functionality is provided by subquerieBor example,
the following query returns all VMs that do not has/FC or VNF
Retrieve V From PATHS V
Where V MATCHES VM()
And NOT EXISTS(
Retrieve P from PATHS P
Where P MATCHES
(VNF()VFC())->[HostedOn(){1,5}]->VM()
And target(V) = target(P)

While many applications naturally consume pathwagther
applications are best served with processed versibthe paths.
Since the core Nepal system processes pathwaysrethet
processing layer operates with a different algebréhe result
processing layer makes use of well-known functidoisexample
source() and target(). So for example, we carsfeaim the query
that finds VM() pathways of VMs that do not hodtldF or a VFC
into one which returns the names and ids of théds by replacing

Retrieve V From PATHS V
With
Select source(V).name, source(V).id From PATHS V

By changing the keyword Retrieve with the keyworelest, we
indicate that post processing is to be performedhenreturned
pathways. A full discussion of the Select clasgdedyond the scope
of this paper.

4. Temporal Graph Queries

Network inventory databases are often used to stmoonplex
network management applications such as troubl¢stypp@nd
service quality management. These applicationd neeess to in-
the-past states of the graph. For example, tndsg an increase
in dropped calls starting at 10:00 am, the netwangineer needs
to consult the state of the network at 10:00 arhftm®current, e.qg.
1:00 pm, state of the network.

A temporal extension to Nepal (discussed in Se&jastores nodes
and edges with thetransaction timg31] by keeping a time range
variable which indicates the system time when tlaalhse
processed inserts, updates, and deletes. Thisotatmgxtension
allows two types of temporal queriggme pointqueries, which
executes at a particular point in time, déinge-rangequeries which
return results over a time interval.

The syntax for a time point query adds a time peittier to the
query as a whole (using thé keyword), or to the individual range
variables. For example, the VNFs with componemas are hosted
on server 23245 at 10:00 am can be retrieved byfatmwing
query:
AT ‘2017-02-15 10:00:00°
Select source(P) From PATHS P
Where P MATCHES

VNF()->[HostedOn()[{1,6}->Host(id=23245)

The set of VNFs which have components hosted ores@8245
at 10:00 am and server 34356 at 11:00 am can beved using
the query
Select source(P)
From PATHS P(@2017-02-15 10:00'),
Q(@'2017-02-15 11:00"),

Where P MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=23245)
And Q MATCHES

VNF()->[HostedOn()]{1,6}->Host(id=34356)
And source(P) = source(Q)

A time-range query specifies a time range for therg, and returns
all pathways that satisfy the query at some paimingj that time
range, along with the time range that the pathvaay e asserted
to exist in the database.

Let us revisit the example of finding VNFs with angponent
executing on host 23245, but between 9:00 am ar@DHm.
AT '2017-02-15 9:00' : ‘2017-01-15 11:00’
Select source(P)From PATHS P
Where P MATCHES
VNF()->[HostedOn()[{1,6}->Host(id=23245)

Every pathway returned by this query has a timeyeaduring
which it can be asserted in the database. Furtresrthis range is
themaximalsuch range. For example, this query might return

resultl:{ times: [2017-02-05 06:30’, ‘2017-02-09:45"],
path: [n1,...,nk] },

result2:{ times: ['2017-02-15 09:15, ],
path: [n'1,...,n'k] },

So the pathway of resultl is asserted to haveestatt6:30 am and
ended at 9:45 am, while the pathway of result2str9:15 and
still exists. Since these are maximal time ranges know that

some change occurred in the graph to invalidateptitaway of

resultl.

In the case of a join query, the semantics of $gieg the time
range of usingAT to associate a time range with a query vs.
associating time ranges with each pathway variaée subtly
different, even when all of the time ranges aregame. When



usingAT, all results must coexist during the associatea tiange,
which is the maximal time range when all of thehpatys co-
existed. For example:

resultl:{ times: [2017-02-15 09:15’, ],
P: { path: [n1,...,nK]},
Q: { path: [n1,...,nk]}
b

If each range variable has its own time range, tteme is no
implicit temporal relationship between the rangealaes (explicit
relationships can be specified in the Where clawse) each range
variable has its own maximal time range in the otitp

resultl:{
P: {times: ['2017-02-15 10:15', ], path: [n1,... ik
Q: { times: ['2017-02-15 08:00’, ‘2017-02-15 09:h5
path: [n1,...,nk]}
b

In a previous work [18], we proposed highly targetemporal
aggregation queries for network engineers:

e First Time When Exists / Last Time When Existsture
the first time / last time when a pathway thatses the
query can be found.

¢« When Exists : return the time intervals during whe
satisfying pathway can be found.

These specialized queries can clearly be answeiad the results
of a time range query, though optimized evaluagitams might be
possible. Another targeted query is plah evolutiorguery, which
tracks the changes of the field values in a speg#dthway (i.e. with
specific node and edge ids). Path evolution gadiie use in
visualization applications, in which a specific Ipaeturned by a
query can be chosen and explored further. Pathutwo queries
are clearly a special case of the time range query.

5. Implementation

We have developed an implementation of Nepal foe irs
advanced applications in ONAP [24] such as trolfdesing and
service quality management. In its current status, have
implemented all of the features described in ttapgp, with the
exceptions which are still under development:

e subqueries

e Full query access to structured data (query a¢oassn-
atomic types in a container, e.g. list, set, mgmat yet
supported)

We have implemented the Nepal query system asaagetable
query translator. Currently we can translate Nepadries into
either Gremlin or SQL (currently PostgreSQL). Télality to
generate code for multiple platforms gives us thiita to use
Nepal as a data integration platform, as paths fddferent data
sources with different underlying query languagas be joined
together.

5.1 RPE Evaluation

Nepal first transforms an RPE into a normalizedrfaonsisting of
four types of blocks:

e Atoms (specific node or
VM(status="green’)

¢« Sequence(R1,...,Rn), representing
>(Rn), where each Ri is an RPE

e Alternation(R1, ..., Rn)
where each Riis an RPE

edge predicates), e.g.
(R1)->(R2)->...-

representing (R1)|...|(Rn),

¢ Repetition(R1,n,m) representing [R1}{n,m}, whereR
an RPE

Nepal then performs anchor selection by findingrevmossible
anchor in the RPE, evaluating the cost of the anaral selecting
the lowest-cost one. In the presence of alternatitocks, an
anchor is not necessarily a single atom, but ragheollection of
atoms that “splits” the RPE. Consider, for example

VNF()->[HostedOn()[{1-3}->
(VM(id=55)|Docker(id=66))->HostedOn{1,2}->Host()

One possible anchor that splits the RPE is in leeretion block
(VM(id=55)|Docker(id=66))

which contains the two atoms of the candidate anoti(id=55)

and Docker(id=66). Since these are highly speaetfiens, the pair

is likely to be selected as the anchor.

The algorithm for finding anchors applies the faliog rules:

*  Atom: select and cost the atom as an anchor.

*  Sequence: select and cost each Ri in the sequéatde b

* Alternation: Collect the set of anchors from eatlthe
Ri. The collection of possible anchors is the sfos
product of the n anchor sets from each of the Ri.

¢ Repetition: Convert Repetition(R1,n,m) into

Sequence(R1,Repetition(R1,n-1,m-1)) and return the

anchor set from R1.

The costing of an anchor is currently performedebfmating the
cardinality of the anchor (number of nodes/edge§)atabase
statistics are used if available; otherwise schieimi are used.

Anchor finding through nested alternation blocka casult in an
exponential blowup in the number of possible anshdhe current
implementation avoids this problem by costing tmeter sets
when an Alternation block is encountered, and ratgr the union
of the best anchor from each alternate Ri.

The normalized RPE and the selected best anchorthene
converted into a collection of database operatdtts aiconversion
technique based on implementing a nondeterminifitiite

automate. The basic operators are Select, ExteddUnion.
Select operators evaluate the anchor atom(s). nExtperators
evaluate the non-anchor atoms. Union operatoreatotesults
where multiple paths are possible (Alternation &wapetition) —
replacing epsilon transitions.

The Extend operators can follow edges either fadwaor
backwards. For example, one possible plan foruatialg the
example RPE is:

«  ComputevM(id=55)|Docker(id=66)
«  Extend forwards by)->HostedOn{1,2}->Host()
¢ Extend backwards byNF()->[HostedOn()[{1-3}

A MATCHES operator returns a 1l-ary table of patasd join
operator returns n-ary table of paths. A full dission of join
processing and optimization is beyond the scophkisfpaper.

5.2 Code Generation

As described in Section 3.1, the code generatigteny creates
queries against a target database, with Python tmgeerform
query sequencing and manage data transfers. Thisdef the
transformation and code generation depend on thettdatabase.

For Gremlin, Select and Extend operators are serilet DBMS

and the results are collected by the Python managecode. We
have implementecchannelsfor our Python framework which
collect results from one or more Gremlin queries supplies them



to one or more Gremlin queries. Thus, the Unioerafors are
implemented by channels.

To accelerate the evaluation of Nepal queries aganGremlin
database, we have implemented several extendedtogser For
example, we have an ExtendBlock operator for Repeti
operators. This extended operator improves eff@iedby keeping
the data in the Gremlin database for multiple ojpesa(avoiding
data transfer overheads), and performing loop lingpl The RPE
payload R in the ExtendBlock operator is limitedt -must be a
sequence of atoms or alternations of atoms. Theygplanner
module can recognize this pattern and replace kotan of
Extend operators with an ExtendBlock operator.

The Postgres implementation of Nepal uses one tableach
distinct Node and Edge class (including Node angechs well as
a table to ensure that unique identifiers are iddesique. We
make use of the Postgres INHERITS keyword to imglentlass
inheritance. So for example, the VM, VM:VMWare, dan
VM:OnMetal nodes are defined by

Create Table VM( ...

) INHERITS(Node);

Create Table VMWare( ...

) INHERITS(VM);

Create Table OnMetal( ...

) INHERITS(VM);

Every VMWare node is also a VM node, and also aéNodde.
The inheritance feature of Postgres is convenientsthema
generation and code generation because inheritatadeen care of
by the target database. For the Gremlin datalvesémplement
inheritance by using the inheritance path of a remtge (e.g.
Node:VM:VMWare) as théabel of the node/edge and using prefix
matching to find all nodes that are VM or are sabskd from VM.
The INHERITS feature of Postgres is implemented vgw
management, so its function can be replicated lierotelational
systems.

The Select and Union operators are implementeddoyvalent
select and union queries in PostgreSql. The redudt query is
stored as a TEMP table, so data transfers occynamén the final
pathway set is communicated. The Extend operatmes
implemented using bulk join operators, using teghas similar to
those described by Fan, Raj, and Patel [9].

The Extend operator can be subclassed along thmemsions:

¢ Does it extend a node or an edge?

¢ Does it extend from a node or an edge?

¢ Does it extend a path forwards or backwards?
Let's consider the RPE

VNF(id=55)->[Connects()}{1,5}]->VM(id=66)

If VNF(id=55) is the anchor, the selection operaturns node.
This is extended b@onnects edges one to five times. So, the first
Extend operator extends a node by an edge, andutteequent
ones extend an edge by an edge. The final Exteactor extends
an edge by a node. All of these Extend operatdend the graph
forwards. Alternatively, VM(id=66) can be chosenthe anchor
and the Extend operators will extend backwardsthef selected
anchor is in the middle of the RPE, the query pldhhave both
forwards and backwards Extend operators.

The first Extend operator is shown below. The Getperator
creates TEMP table tmp_extend_node, and this {ableodes) is
joined against the table (of edgex)nnects . The TEMP table

5 http://pgxn.org/dist/temporal tables/

representation of a path is uniform for all Sefeud Extend queries.
Field uid_list is a list of the node and edge uidsthe path,
concept_list is the class of the corresponding festie (for path
reconstruction), and curr_uid is the id of the lalgment of the
path. After the Select, the T.curr_uid has theenoil which is
joined against the source uid, source_id_ ofGhenects edge.
The final predicate ensures that there are no syolthe path.
create TEMP table tmp_extend_node_1 as(

select ARRAY[ H.id_] || T.uid_list as uid_list,

ARRAY/|cast(‘Connects’astext)] || T.concept_list
as concept_list,

H.target_id_ as curr_uid,

from Connects H, tmp_Select_node T

where H.source_id_ = T.curr_uid

AND H.id_ <> ANY(T.uid_list) );

The next Extend query extends an edge by an edpehes
source_id_ of theConnects edge is the matches against the
curr_uid of temp_extend_nodel. There is an intpldode
between the edges, with uid H.source_id_, so tlisand class
label are added to uid_list and concept_list.
create TEMP table tmp_extend_node_2 as(

select T.uid_list || ARRAY[ H.source_id_, H.id_]
as uid_list,

T.concept_list || ARRAY][cast(Node' as text),
cast(‘Connects’ as text)] as concept_list,

H.target_id_ as curr_uid,

from Connects__history H, tmp_extend_node_1 T

where H.source_id_ = T.curr_uid

AND H.source_id_ <> ANY(T.uid_list) and H.id_ <>
ANY(T.uid_list) ):
The other cases of Extend operators are handledadim
Extensions by following edges backwards use tigetaid_ as the
node uid, and prepend to uid_list and conceptifistead of
appending.

5.3 Temporal queries

We used the temporal_table®ostgres extension to create a
transaction-time temporal graph database. Crediimgslice
queries is (mostly) a matter of constraining eactge variable that
accesses graph data to the time point of the qu@&igne range
queries are more complex, as the intersectioneofithe ranges of
all nodes and edges in the pathway must be compntéélept with
the pathway.

When using the temporal_tables extension, each oodége, e.g.
VM, has two tables, one for the current snapshdtare for the
history. We create a view, e.g., VM__historicahieh is the union
of these two tables. To evaluate a timeslice queith time

constraint

AT '2017-02-15 10:00:00

only requires adding the following predicate to tBelect and
Extend queries:

H.sys_period @> ‘2017-02-15 10:00:00'::timestamptz
6. Application and Evaluation

We have been loading data sets into Nepal-strutaletabases for
topology data from two different sources. Thetfissa virtualized

network service, with about 2,000 nodes and 11¢fifes in the
current snapshot. The second is a legacy netvepdldgy used

for service path applications with about 1.6 millisodes and 7.1
million edges. Both databases are loaded intstafti¢al database,
with a two-month history, and both contain nodethwstructured

data.



We developed a collection of queries on these slets. For the
virtualized network service, we developed four eglErgueries
based on the network model in Figure 2. Two ofdberies are
“vertical”: a top-down navigation query (from VN#® Host) a

bottom-up query (from Host to VNF) via HostedOn esidthe

difference is whether the node at the start vsetiteof the RPE is
an anchor). The other two queries perform “horiamavigation.

The first of the horizontal queries one which natés from Host
to Host via physical Connects edges (through swi@nd routers),
and the second navigates from VM to VM throughuatConnects
edges (through networks, virtual routers, and VM$)e results are
shown in Table 1.

Type # paths Time (snap) Time (hist
Top-down 19.5 .058 sec. .073 sec.
Bottom-up 2.3 .061 .072
VM-VM (4) | 215.9 184 .206
Host-Host (4) | 18.5 .067 .081
Host-Host (6) | 561.7 .67 .68

Tablel. Query responsetimes, virtualized service graph.

For each query type, we executed 50 instances epartrthe
average number of paths returned, and the averageit@n time
in the current snapshot and in the full historye(éhare only 33
distinct VNFs so we evaluated only 33 queries imsta for top-
down). We avoided instances that result in zerthpaas they
tended to have a significantly lower response tiriiéne horizontal
queries are normally limited to length-4 paths,wetried a length-
6 Host-Host path query to test scaling. The scheagl2 edge
classes and 54 node classes. The full historyssaBger than the
current snapshot database. We measured the exetirtie as
starting from when the first query was submittedvteen the final
paths table is completed.

The regular queries that an interactive applicatimuld make
execute in less than 1/10 second, except for VM-MMich
executes in .206 seconds on the full history. &hesponse times
are within the acceptable range for interactive liappons.
Queries on the full history are only moderatelywsdo than the
queries on the current snapshot.

We expanded the number of hops allowed for the Hiost path
query by two, as paths in the Host-level topologwé even
numbers of hops. The cost of these queries isfisigntly higher,
as very large numbers of paths must be explored.

These queries, as written, return very large numbgpaths. The
issue is that the RPE is very simple, essentially
Host(name="src ’)->[Connects()|{1,6}->

Host(name=" tgt' )

A properly written query uses interconnection t@ggl constraints
to prune out improper paths. A simple proxy idimait the path
length to 4.

For the legacy topology, we developed a forwardsice path
query, a reverse service path query (both ‘horadna top-down
vertical query, and a bottom-up vertical query. eThorizontal
queries are of length 4 and the vertical queriesoétength 3. We
execute each query on 50 instances, again avoidatances that
return zero paths, and report the average numbgaitbs returned
and the average execution time on the snapshofuindistory
graphs. The full history graph is 16% larger thha snapshot
graph. The results are shown in Table 2.

Type

# paths | Time(snap)‘ Time (hist)‘

Service path 32.9 .038 sec. .040 sec.
Reverse path 391,000 9.844 9.520
Top-down 4.4 .029 .039
Bottom-up 73.18 672 72
<partitioned> .049 .059

Table2. Query responsetimes, legacy topology.

The queries that are executed in the “forwards2aion (with the

anchor at the start of the RPE) execute within Ed¢bnd, which
is acceptable for interactive applications. Thesrse service path
query returns a huge number of results, and woeldised for

deeper mining queries — in which case a response tinder 10
seconds is acceptable. Queries on the full hisgrgph are

moderately slower than on the snapshot graph.

A disappointing result is the high response timetlfie bottom-up

query, which would often be used in an interactivenner. An

examination of the results shows that 34 of the&fples have a
response time under .06 seconds, while the rengaltnsamples
have a response time of 2 to 4 seconds. Furthesiigation

showed that the slow samples encounter nodes with karge

numbers of incoming edges, almost all of which ienglevant to

the query.

The legacy graph was supplied as a collection des@nd edges
with type_indicators — the class(es) of the nodedge. Nodes
could have multiple type indicators, but edges hagingle type

indicator. We loaded the legacy topology as predidwith one

node class and one edge class. The problem wéluating the

bottom-up query made us reconsider the legacy gragiel. We

created 66 subclasses, one for each possible gdgeirtidicator

value, and loaded a graph from the most recentsd#sta. In the
relational implementation, each edge class is ldaate a separate
table. We evaluated the two slowest queries ometlgcy graph:

¢ Reverse service path: average of 8.390 sec.
¢ Bottom up: average of .049 sec.

The reverse service path query becomes moderasigrf while
the bottom up query becomes much faster — fast gindar

interactive applications. Both queries benefittédm the

automatic elimination of many useless edges froennéwvigation
joins. However the reverse service path queryrafijuencounters
a very high fanout due to relevant edges, so théommeance
improvement is limited.

6.1 Summary

Our experiments demonstrate the usability of Négratomputing

paths on communication network topology graphs. il&Vthe

current implementation is still undergoing a sigraht

optimization effort, we were able to execute commaser-

suggested path navigation queries with acceptasigonse times.
These databases are currently in use for develdgogleshooting
and Service Quality Management application protesyp

Our approach of strongly-typed nodes and edges sulitlasses
aided our experimental development in several walysr one,
strong typing and uniqueness constraints in theaNephema
prevented us from loading garbage data into thphgaenabling
early debugging. By contrast, common property-grapgstems
will let you load garbage without any warnings. r mother, the
Nepal class system enables the simple expressitmedfaversal
atoms, streamlining query development. Finallg, ¢ass system
enables a natural partitioning of nodes and edge®ur relational
implementation, we used separate a table for etds.c This



partitioning can lead to significant performanceiovements, as
is the case with the legacy bottom-up query.

The relational implementation of Nepal has sevexatactive
features. For one, graph data can be readily miwitidrelational
data, and paths can be post-processed using pdvemfiuages
such as PostreSQL. For another, the relational ekt beprofiled

to identify trends and data quality problems.

Using the temporal_table extension to Postgresbeasn highly
effective. While we are storing 60 days of grapapshots, the
space overhead is only 16% for the large legagytoraas opposed
to 5,900% for the conventional approach of stoi@gseparate
graphs. The transaction-time tables also allow tEmporal
profiling which can reveal patterns of network inventory
maintenance.

7. Related Works

Graph databases have been studied extensively fhgredit
researchers [3], and many query languages for gdaphbases
were proposed during the last decades, (see aligiWood [34]
on the subject). This includes query languageséani-structured
databases such as UnQL [6], Lorel [1] and a flexiphttern
matching of graph queries to semi-structured da®} [ XQuery

and XPatfwere developed as query languages for XML. The TAX

tree algebra for XML [13], was developed in the Ban [14]
project. SPARQE is a query language for Linked Data. TRIPLE
[30] is a rule-based query language for RDF, base#iorn logic
and F-Logic. Regular Path Query (RPQ) languages Hmen
proposed (see [2][34] for a survey), but the regelgressions are
on the edge labels.

The Cyphet query language is a native graph query language of

the Neo4j graph database system. Grefigna query language for
graph databases that implement Blueprints. Suctydaeguages,
however, are not well adapted to the type of pathiaval we
present in this paper or for troubleshooting in camication
networks.

Of the open-source languages, Cypher is the modiasito Nepal
among the above languages. It uses ordinary vesdolr nodes
and edges, and allows specifying ‘named paths’ kvare like path
variables. However, the ordinary variables are iiable for
regular path expressions, eg., for
[HostedOn()|ConnectedTo()[{1,4} in a variable, the variable
should accept sequences of 1-4 edges. The namies @atthe
other hand, are not ordinary variables and caneatsed in a join
of paths or to hold the result of a regular patbression. In Cypher
this is not a problem because it neither suppatular path
expressions (it only uses regular expressions tfdbate values)
nor processing of sets of paths. So, Cypher igéuhin its ability
to extract and process paths of varying length.

A path-based query language for biological netwdnks been
presented in [21], but unlike this work, they dd albow complex
conditions on paths or manipulation of sets of pa#inother path-
based query language has been described in [8thbutextract
paths and use them to create complex graph stasctlihey do not

8 http://iwww.w3.org/TR/xquery/

7 http://iwww.w3.0org/TR/xpath/

8 http:/ivww.w3.org/TR/rdf-spargl-query/

9 http://neo4dj.com/developer/cypher/

10 https://github.com/tinkerpop/gremlin/wiki

Uhttps://blogs.technet.microsoft.com/dataplatforrdas2017/04
/20/graph-data-processing-with-sql-server-2017/

capturing

consider paths as first-class-citizens of the laggu Microsoft has
incorporated a limited form of RPQ in SQL Sefter

PGQL [25][29] is a property graph query languageetieped by
Oracle which supports regular path expressions beér nodes
and edges and supports variables that range otres@ts. As such,
PGQL is similar in its treatment of paths and padhiables to
Nepal. Papers describing PGQL and Nepal were phedis
concurrently [18][25]. However the Nepal path nhég syntax

treats nodes and edges symmetrically, has strorighed

nodes/edges with complex data types, class inhestaand
polymorphism, and supports sophisticated temparefigs.

Several recent works [5][9][16] have found that atiginal
databases are competitive with specialized gragmes. A recent
graph database “shoototf” found that Postgres has better
performance than several open-source graph datl{ase is
harder to write graph queries). In one approdehptoperty graph
is “shredded” into wide tables with every possildeoperty
[4][17](33].

A strongly typed graph can be stored in a collectibtables, one
for every node and edge class [22]. This apprdaazh been
disparaged as a “join bomi3 but it works well in practice. Nepal
extends the approach in [22] with complex data ataks
hierarchies on the nodes and edges. SLQ [35] eesaraphs with
approximate ontologies. OrientBBhas incorporated a graph
database layer on their document store.

A body of analytical work exists on temporal grapbg. [11].
Khurana and Deshpande [19] describe an efficiestesy for
materializing a past state of a graph using sndpstmad deltas.
However the entire graph must be materialized é@wanly a small
portion is queried. Campos et al. [7] proposersitss to Cypher
for temporal graph queries. Huang et al. [10] dbsc bolt-on to
Neo4J which allows versioning of properties in radand
Rodriguez [28] describes a bolt-on for the Tinkgrtack which
allows property versioning. Robinson [27] descsibew temporal
graphs can be constructed with a multiplicity ofles and edges
for various versions. In Nepal, we have implemenge full
temporal graph database which supports sophidticeeporal
graph queries and in a transparent manner.

A preliminary description of Nepal appeared in [X8jd Nepal was
demo’ed in [15]. For this paper we present aitbetalescription
of Nepal's motivating application; in addition wave revised the
language constructs and the algebra, developedgbroyped

concepts and temporal support, and have developetmetable
query system.

8. Conclusions

In this paper, we describe the inventory databasgirements
needed to support operations management and tehdutng
over dynamic network inventories of a virtualizedtwork
infrastructure in AT&T's ECOMP [26] (now merged mONAP).
Our motivation has been to support service pathbieshooting,
so we made pathways in the graph a first-clasgecitiin our
language and algebra. Tosca is the standard ONA&eling

2 https://www.experoinc.com/post/encore-graph-dbesiat-
presentation-for-austin-data-geeks

13 nhttps://neodj.com/blog/demining-the-join-bomb-wighaph-
queries/

14 http://orientdb.com/orientdb/



language; Nepal enables TOSCA-based model-driverying of
the complex collection of inventory entities andatienships
through strongly-typed concepts and concept compsne
Troubleshooting needs access to in-the-past stdtéise graph,
which Nepal supports with timeslice and time-ranggeries. Our
implementation of Nepal has a query-generation igcture,
creating queries in the choice of target language€ntly Gremlin
or PostgreSQL) from an intermediate form of a DAGlatabase
operators.

Although Nepal is already a highly effective grapdarch and
exploration system, there are many avenues of dutesearch.
These include optimization of RPE evaluation, pawoins;

context-dependent RPE evaluation (e.g. routing egbl
aggregation and data exploration queries on pathsetg; and the
development of Nepal as a data integration platform
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