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ABSTRACT
An essential step in the customer care routine of cellular service
carriers is determining whether an individual user is impacted by
on-going service issues. This is traditionally done bymonitoring the
network and the services. However, user feedback data, generated
when users call customer care agents with problems, is a com-
plementary source of data for this purpose. User feedback data is
particularly valuable for this purpose as it provides the user perspec-
tive of the service issues. However, user feedback data is extremely
noisy, due to range of issues that users have and the diversity of the
language used by care agents. In this paper, we present LOTUS, a
system that identifies users impacted by a common root cause (such
as a network outage) from user feedback. LOTUS is based on novel
algorithmic framework that tightly couples co-training and spatial
scan statistics. To model the text in the user feedback, LOTUS also
incorporates custom-built language models using deep sequence
learning. Through experimental analysis on synthetic and live data,
we demonstrate the accuracy of LOTUS. LOTUS has been deployed
for several months for use by care agents, and has identified the
impact over 200 events.
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1 INTRODUCTION
Commercial cellular networks typically have customer service cen-
ters set up to handle feedback from users. When a service problem
occurs and users are impacted, groups of affected users tend to call
into the customer service centers simultaneously. If this data could
be mined, it would provide network operators the users’ perspec-
tive of service-impacting problems. Such user perspective would
provide a complementary viewpoint to that of standard service
monitoring tools. This could, for example, help service operators
understand if there are unexpected issues from the user perspective
even if the service is functioning as expected, or what issues users
are experiencing under a specific service problem.

In this paper, we study how to identify the users affected by a
service-impacting problem from user feedback on nation-wide cellu-
lar network in the US with over a hundred million users. We define
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event to be a service-impacting problem that affects multiple users,
typically within a bounded geographic area, e.g., a network outage,
a device software bug, third-party server issues. We define the user
impact of an event to be the users that are affected by the event.
When a user calls in with a service problem, the following workflow
is typical: first, the user is directed through an automated system
to the appropriate first-tier team. If the user’s issue is technical (as
opposed to billing, administration, etc.), the first-tier team has the
user run some standard technical tests and checks for any known
outages. If a technical cause is not easily discovered and there are
no known outages, the problem is escalated to second-tier technical
teams for investigation. Throughout the process, agents write a
summary of the user’s problems, the troubleshooting steps taken
and their results. We define this agent-generated summary to be a
case. We define the cases pertaining to an event to be event-specific
cases, and the remaining cases to be non-event cases.

When an event starts and impacted users start calling the cus-
tomer service center, service operators want to learn of the event as
soon as possible. However, each individual agent does not have the
global picture: each agent responds only to a relatively tiny number
of calls, and agents do not have the time to discuss possible emerg-
ing events (and may not even be co-located at the same worksite to
have any opportunity to communicate). Thus, with the few cases
that an individual agent may be aware of, we want to identify the
user impact of the event. Formally, the problem of identifying user
impact is the following: given an event e , a set U of unlabeled cases
and a small number of labeled event-specific and non-event cases L,
find as many other cases pertaining to e as possible from the set U .
Note that our goal is to identify the individual cases that constitute
the user impact, not simply report whether or not there is an event.

Challenges. The problem of understanding user impact is natu-
rally a machine learning problem, but the nature of the user feed-
back data makes it infeasible to directly apply standard techniques.
To explain the challenges involved, we first provide some high-level
background about the user feedback data, and then describe why
the direct use of standard techniques would not solve our problem.

Data Challenges. The user feedback data comes from the commu-
nication between the user and the agent, and there are many points
for disparity in language that captures the communication. Some
differences come from variations in individual user and device be-
haviour, while others come from variations in agent behaviour. The
scale of the event-specific cases also poses challenges. We describe
these briefly here, and defer the details to Section 2:
(1) User Diversity: There are a wide variety of users, and a prob-
lematic event might appear different to different types of users or
even in different geographic locations. There is a wide range of
device models in use, and device behaviour may also depend on its
configuration, operating system, application usage, etc. Moreover,
users may not know when their device started misbehaving, and
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may not accurately report the problem symptoms they observe on
their device. We also obtain only an approximate zipcode as an
estimate of a complaint’s location, and it is unlikely to reflect the
exact latitude/longitude of the problem.
(2) Agent Diversity: A major challenge comes from the natural
variation of language data: two agents could speak to users with
identical problems and still describe them very differently in the
case notes. Inconsistent case handling by agents adds additional
disparity. Some records contain many details about the problem
description, debugging steps taken and results; many others contain
only a high-level summary of the conversation with the customer.
The text also typically contains spelling mistakes, domain-specific
abbreviations and acronyms, which change over time. Moreover,
agents may have access to different kinds of information when
resolving a case, and so process them differently.
(3) Scale of the Event: There are many reasons (technical and non-
technical) that users contact customer service agents, and the vast
majority of the cases are not event-specific – an event normally
contributes only a small portion of the total volume of cases ob-
served during the time window of the event. Events can also be
tiny, on the order of tens of cases, and thus consist of too little data
to even learn from.

Methodology Challenges. These data challenges make it imprac-
tical to directly apply standard learning techniques to solve our
problem. First, due to the diversity of user feedback data, super-
vised learning is impractical – supervised learning would need a
representative sample of the event-specific cases in order to gen-
eralize well, and having domain experts manually label sufficient
event-specific cases is impractical. Purely unsupervised techniques
(e.g., keyword analysis, clustering, heavy-hitter algorithms) also are
impractical in our problem, due to both scale and diversity reasons.

Our problem is a natural fit for semi-supervised learning, since
an individual agent can provide us with their few known event-
specific cases. However, unlike standard semi-supervised learning,
we do not always have enough unlabeled data to learn from in an
event. Because semi-supervised learning depends on the underlying
structure of the data, it requires enough unlabeled data to be able
to infer the structure of the different classes. With events as small
as few tens of cases, the user feedback data is too diverse to allow
a straightforward use of semi-supervised learning algorithms.

Our approach. In this paper, we take a semi-supervised approach
to the problem of identifying user impact. We design a custom
framework with diverse machine learning and statistical compo-
nents to address our specific challenges. Our key insight is that
event-specific cases have multiple dimensions of similarity between
them, some of which are non-redundant.1 This property allows us
to build tight clusters of cases in one dimension (starting with the
little labeled data), and then use those clusters to grow clusters
in the other dimensions iteratively. Thus, even though the little
labeled data is not representative, it provides a starting point for
the framework, and from this starting point, we can find a sequence
of clusters that constitute the user impact.

More precisely, our main algorithmic idea is to decompose the
problem into two tightly-coupled sub-problems, co-training [2] and

1Note that due to the presence of non-redundant dimensions of similarity, our problem
cannot be solved solely with co-training [2].

Attribute Values
Need 90
Subneed 475
Subsubneed 1367
Task Resolution 3334
Device Model 4168

Problem Description Values
Call connectivity 8
Call quality 4
Text 8
Data connectivity 6
Data speed 5

(a) Number of unique values (b) Similar values for some
for attributes problems in the Subsubneed field

Figure 1: Properties of Case Attributes

spatio-temporal clustering and repeatedly use the results of each to
bootstrap the other. We enhance this core algorithmic framework
with word vectors and deep sequence learning models; this lets us
address the practical challenges that come from the noisy case text,
particularly for small events. The unusual language used by the
care agents (detailed in Section 2) requires that we custom-build all
the language models for our data.

Contributions. We have designed, prototyped and deployed a
practical framework that identifies the user impact of the event,
called LOTUS (for Location Trouble Scanner). With measurement
analysis of the user feedback, we identify the unique characteristics
of our data. On the basis of these characteristics, we develop a
novel algorithmic framework to solve our problem, with co-training,
spatial scan statistics, word vectors and deep sequence learning.
With experimental analysis on real and synthetic data, we show
LOTUS is highly accurate, even when provided as few as 10 labeled
event-specific cases. LOTUS has been deployed since August 2018
in a field trial for multiple care agent groups and operates in near
real-time. It has identified the impact of over 200 events, and has
discovered both typical and unusual user perspectives.

We believe that our work offers insights into practical challenges
in analyzing user perspective from data recorded at large customer
care centers, as well as the workflows necessary to address these
challenges. Our learning framework may also be of interest in other
problems with multiple non-redundant dimensions of similarity.

2 PROBLEM BACKGROUND
In this section, we first describe our data sources, some of their
unusual properties and the resulting challenges. We then present a
case study to illustrate some characteristics of our problem.

2.1 Data Description
Our data consists primarily of two sources: customer care case data
and a user-provided location data. Our analysis in this section is
performed on 13.1 million cases collected over an extensive long
time duration when users spoke to service representatives of a large
mobile network provider. All sensitive and private information was
removed before any processing was done on this data.

Customer care case data. When a user experiences a problem
or issue and calls the customer care center for assistance, a care
case is recorded by the care agent. Each care case includes: (1) a set
of attribute fields, where agents choose from a set of pre-defined
values (2) a free text field, where agents may write in a description
of the user’s problem and the actions they took to resolve it. Both
sets of fields are customarily populated in each case. Crucially, for
a large number of cases, the case attributes and the case notes both
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Word Synonym phrases found in case notes
customer cx, cust, cus, cu, cxci, cci, ccio, cco, cic, ccii,

cciu, ci, ccito, cvci, ccoi, cici, ccin, ccui, cxci, ccvi,
cfci, cxcalled, custcalled, ccfi xcci, ccim, cdci, ccit

signal bars, singal, strength, strenth, reception, strengh,
siginal, sig, signa, singnal, recption, bar, receiption,
sgnal, serviceat, sigl, signl, sgnl, signals

trouble trbl, troble, touble, truble, troube, troubl, troule,
trble, issue, issuses, issu, issueswith, prob, problem,
prblems, promblems, problmes, difficulty, probelms

Figure 2: Sample words along with their equivalent phrases
in the case notes, illustrating the unusual vocabulary
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Figure 3: Care case statistics

individually contain enough information to deduce the high-level
service issue experienced by the user.

The attributes of a case include information pertaining to user
identity, user device, agent identity, agent site location and work-
group, the problem the user had (at multiple levels of granularity),
the resolution the agent performed, and whether follow-up is re-
quired. Figure 1(a) shows the list of attributes that we use in this
paper, and the number of unique pre-defined values they each have.
The fields Need, Subneed and Subsubneed describe the user’s issues
at increasingly finer levels of granularity. The field Task Resolution
describes the action taken by the agent, and the field Device Model
contains user’s device hardware/software model and version.

There are several challenges in analyzing these case fields. First,
several of the values for given attribute are similar (e.g., there are
multiple names for the same problem, in slightly different language).
Figure 1(b) lists the number of similar values for the some commonly
reported problems in the Subsubneed field. Second, there are also
a number of values which are ambiguous, covering a mixture of
multiple problems. Third, the case notes contain many domain-
specific terms and abbreviations, as well as many spelling errors. To
illustrate the range of abbreviations used for just a single word, we
give some examples in Figure 2. Such abbreviations are interspersed
throughout the notes. Figure 3(a) shows that the agent notes are
quite concise, with over 90% of the notes under 60 words long and
40% of the notes under 10 words. Because these notes are written
with their own vocabulary, sentence structure and idiosyncrasies,
models trained on regular English language samples will not be
accurate on these notes.

Location data. We obtain a zipcode for each user with their case,
as an estimate of their most frequent location. In each individual
case, this zipcode is unlikely to accurately reflect the exact problem
location, but is likely to be within the same metropolitan area. Ex-
amining these locations in aggregate is thus likely to give us useful
information to assess the user impact of an event. In this work,
we examine the aggregation of these locations county subgroups, a

well-defined entity from the census measurements which subsumes
a city or a suburban living area [1].

2.2 A Motivating Case Study
We show a real-world network outage event case study to illustrate
the challenges and characteristics of our problem. The outage event
lasted several hours during which some users were not able to make
calls or send texts into or out of the affected region, or use data
while in the affected region. We obtained the ground truth of this
event using supplementary information from network logs.

Figure 3(b) shows the normalized time series of the event cases
and total cases in 15-minute intervals during the event (for propri-
etary reasons, the raw numbers are normalized by the total case
counts seen in the duration of the event). Note that the event cases
form a tiny fraction of the care cases seen routinely during the same
time window. On the other hand, the total case volumes exhibit
periodicity and predictability – they have a clear diurnal pattern as
well as a weekly pattern (no graph shown due to space constraints).

Figure 4 shows the user population, total case counts, and event
case counts during the day of the event, at each user-provided zip-
code. (For proprietary reasons, the locations have been anonymized
while maintaining the location structure of the population; the raw
case counts have been normalized by dividing by a number). Note
that while the first two maps are very similar, they are substantially
different from map for the event cases. In particular, there are quite
a few densely populated locations in first two maps that are not
present in Figure 4(c). These maps illustrate the spatial structure
inherent in the event cases.

Figure 5 lists some sample notes from the event cases. We note
there is a diverse set of problems reported by users, including
problems with outgoing calls, incoming calls, service quality, no
service at all, data connectivity, and voicemail. The notes describe
the problems in a variety of writing styles, vocabulary sizes and note
lengths. Synonym phrases are heavily used in these notes. Many
notes describe multiple problems, even though the case attributes
can define only a single problem. Indeed, 98% of the notes from
the sample event are distinct (even after text standardization and
stemming). Identifying the user impact of the event thus requires
identifying cases across all these diverse kinds of cases.

3 LOTUS FRAMEWORK
The main high-level steps of LOTUS are the following:
Step 1: Feature extraction: We construct examples consisting of both
case attribute and case text views by extracting features from each
of them. To accomplish this step effectively, LOTUS pre-trains word
vector models [19]. We describe this step in Section 4.1.
Step 2: Co-training: In this step, we learn to distinguish the event-
specific cases from the normal cases on a fixed set of space-time
windows. We use co-training to find separate classifiers for the text
features and attribute features using the labeled and unlabeled data.
We also enhance the text classifier by pre-training language models
with deep sequence learning. We describe this step in Section 4.2.
Step 3: Spatio-temporal Localization: We use spatial scan statistics
to identify space-time windows of geographic regions with an
unusual number of similar complaints to those identified through
co-training (described in Section 4.3).
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Figure 4: Maps showing comparative densities of user population, total cases received and event-related cases received

User Problem Agent Notes
make calls cci unable to call non [NETWORK] numebers called

tech known issue
receive calls reason spoke to [NAME] getting non working error

when someone calls him
service quality cust having problem with reception data went thru

tg network outage showing edu etr [DATE]
voice, data ed about the outage of the voice and data in the

area ed about knowing issue
no service cci saying that he has no service on the phone

and he unable service nothing but text working
it acts like its make the phone call but no
connection on the phone looked into the network
and shared information with the customer about
a known network outage in the area

data connectivity cx calling because they unable connect to data
voicemail cci voice mail not workingnor is cx able to

make some calls

Figure 5: Some sample agent notes (verbatim) showing the
diversity in the writing style, details recorded, customer
symptoms and unusual language usage

Figure 6: LOTUS System overview

Step 4: Alternate Maximization: We iterate between co-training and
spatio-temporal localization until few new cases are discovered in
the iteration. We also set a maximum number of iterations after
which LOTUS terminates.
Step 5: Supplementary Analysis: We finally perform supplementary
analysis on event cases to see if the event is specific to a device
model (details in Section 4.4).

Figure 6 illustrates the LOTUS system overview. Themain idea in
LOTUS is: use co-training to identify the data slice used for spatial
scan statistics and use spatial scan statistics to identify the data slice

used for co-training. Both these steps are critical. Vanilla spatial scan
statistics has poor accuracy, especially for smaller events (shown in
Section 5.2.2), because the event cases are typically buried among
the non-event cases (as seen in Section 2). Thus, co-training is
necessary to identify the data slice to be tested for spatial correlation.
Likewise, vanilla co-training also has poor accuracy (shown in
Section 5.2.2), as it cannot distinguish between event cases and
non-event cases that describe the same complaint (e.g., complaints
about making calls may occur both in event cases and non-event
cases). Spatial scan statistics are necessary to define the appropriate
space-time boundaries for analysis, which delineates the slice of
labeled and unlabeled data where co-training can be applied.

4 METHODOLOGY
4.1 Feature Extraction
We describe here how we convert a case into an example with two
feature sets, text features and attribute features. All cases (and thus,
examples) remain annotated with their location.

Case Attribute Features. We use standard one-hot encoding [20]
to convert the attributes into binary features. The one-hot encod-
ing loses some relevant information – in particular, the attributes
have many similar values denoting the same (or related) underly-
ing problem; the names of these values indicate which groups of
values are similar, but the one-hot encoding loses this information.
However, co-training allows us to find these groups again, using
the information in the case notes.

Case Text Features. Because there is so much variation in writing
style, language used, domain-specific abbreviations, and writing
quality, we choose a representation for the text that normalizes
these variations without losing the distinctive aspects of event-
specific cases. Standard n-gram representation of words (even with
stemming) would not work well in this domain – there would be
many features for each commonly-used word due to the range of
abbreviations and misspellings.

Instead, we represent words using contextual vector summaries
of words, i.e., word2vec [19]. Here, each word is a vector in Rn ,
learnt such that words used in similar contexts have vectors that
are near each other in Rn . Once we have the word vectors for
individual words, we create an example for each note as the se-
quence of the word vectors of all the words in that note. We choose
a word-based representation over a character-based representation
since many very different words in our data (e.g., device names,
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apps, locations) have similar contexts, and we want to capture that
similarity in our model.

In LOTUS, we pre-train words into 300-dimensional real vectors
using a few months of historical case notes. We choose 300 dimen-
sions because most words in our vocabulary have far many more
frequently-used abbreviations than regular English. We build these
vectors using the contextual bag-of-words model with hierarchical
softmax, with a window of 4 words before and after the word. We
use this short window because agents tend to write concisely, as
seen in Figure 3(a). With this short window, many case notes will
have comparable text windows for learning word contexts.

4.2 Co-training
We now describe how we learn from the examples constructed with
both attribute and text features using co-training. In this step, the
set of spatio-temporal windows under consideration remains fixed,
and we analyze the examples only in these windows.

4.2.1 Co-training Overview. Co-training [2] is an algorithm that
performs semi-supervised learning on data that has two redundant
sets of features. The key assumptions are: (1) each set of features be
individually sufficient to represent an accurate classifier on the data,
and (2) that the two sets of features are independently generated
when given the class label. Section 2.1 explains how the first as-
sumption is met, i.e., the attributes and the text are both individually
sufficient to represent an accurate classifier to distinguish event
cases and normal cases. The second assumption implies that the
attributes and case notes are essentially chosen independently from
semantically equivalent options (i.e., conditioned on the class label);
the large number of care agents with minor behavioral differences
ensures that this assumption is met in aggregate.

Co-training simultaneously learns a text-only classifier St and an
attribute-only classifier Sa , and uses the unlabeled data to bootstrap
learning by forcing the text-only classifier and the attribute-only
classifier to be consistent. To use co-training, we need to specify
the two supervised learning algorithms Sa and St . Below, we briefly
describe our algorithm for learning Sa . Learning St is more chal-
lenging, since the case notes are so diverse; we describe its different
components in Sections 4.2.2 and 4.2.3.

For learning Sa , we first observe that a few groups of key at-
tributes can essentially carve out the positive examples from the
data, i.e. a few sets of combined values for attributes Need, Sub-
need, Subsubneed and Task Resolution. Thus, accurate classifiers that
capture the event in a fixed space-time window can be encoded
by DNFs [20], i.e. a disjunction of conjunctive clauses. We choose
this classifier representation because we can then avoid creating
features for every possible attribute value; instead here, we only
need to create features for those attribute values that are necessary
to represent the event data. In LOTUS, we use 3-DNFs, i.e., a DNF
such that each conjunctive clause has 3 variables.2 We choose 3-
DNFs instead of 4-DNFs so as to allow a little flexibility in the event
case attribute values. We use a standard algorithm for learning DNF
classifiers [13], and describe the detailed parameters in Appendix A.

2For example, a boolean function (Need1 ∧ Subneed1 ∧ Subsubneed1) ∨ (Need2 ∧

Subneed2 ∧ Resolution2) is a 3-DNF. Used as a classifier, it encodes that either the set
[Need1, Subneed1, Subsubneed1] would all need to be present in the attributes of the
case, or the set [Need2, Subneed2, Resolution2] would all need to be present.

4.2.2 Learning Language Models. A major challenge with using
semi-supervised learning in LOTUS is that many events are very
small. For example, an event in a small town can have just a couple
of dozen cases, and their case notes can consist a variety of writing
styles. Then, the data in the analysis window is likely insufficient
for learning a complex text classifier from scratch. However, in most
events, users typically face one of a few technical problems (i.e.,
voice, data, etc.), and so the case notes, despite their diverse writing
styles, are mostly about these few technical problems. If we can
pre-train a text classifier for these common technical problems, we
can select one or more of these classifiers for St , instead of learning
a complex text classifier from scratch.

The historical case notes are often sufficiently representative of
the diverse language of a technical problem, but it is difficult to label
the notes comprehensively through manual effort. However, the
case attributes offer an independent description of the complaint,
which we can interpret as a noisy label on the case text. Because
of the ambiguity and overlap among the attributes, many case
attributes can reflect overlapping, similar, or multiple problems (as
discussed in Section 2.1). But for our purposes, we do not need to
use all the attributes or comprehensively label all the case notes;
we only need a data set of case notes sufficiently representative of
the technical problem so we can build a good text classifier.

To obtain this data set, we choose a few unambiguous and non-
overlapping case attributes for each technical problem, and use
their case notes as noisy training data for that particular problem.3
This way, instead of using all the historical data, we have selected
a number subsets of the data for supervised learning of the text of
each technical problem. These subsets are still noisy, but we find
that they are accurate enough to learn a representative language
model for each technical problem.4 Because many case notes are
ambiguous and appear with multiple technical problems, we cre-
ate an independent validation set of 200 cases for each technical
problem (which we manually label).

We use deep learning to train 8 language models: 7 are for tech-
nical problems, i.e. voice, data, text, e-mail, wifi, hotspot, wifi calling;
1 is for a commonly-used resolution during events, which the agent
informs the user of an ongoing outage, and we term this known
outage. The unusual text of the case notes requires that we train
our own language models from scratch, and we cannot use pre-
trained off-the-shelf English language models. We use standard
models and learning algorithms found appropriate for sequence
learning [7, 8]. Specifically, we use a 3-layer network: (1) a 128-node
LSTM [10] with standard activations; (2) a 16-node fully connected
hidden layer sigmoid activations; (3) a 1-node output layer with
sigmoid activation. For completeness, we specify full parameters of
the models and their training in Appendix A.

4.2.3 Co-training with Language Models. Finally, we describe how
we incorporate these language models into co-training. We first de-
scribe co-training algorithm of [2] formally. Let x = ⟨fa , ft ⟩ denote
an example constructed from the case, with fa denoting the set of
features from attributes and ft denoting the set of features from
3We note that our goal is not to predict the case attributes, but merely to distinguish
between pre-defined groups of selected case attributes.
4Note also that the labels obtained from case attributes are different from labels that
indicate whether a case is event-specific. The labels we obtain from case information
are only useful for building language models, and apply only to a subset of the data.
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the case text. Let L denote the initial labeled data, and U denote
the unlabeled data. Recall Sa and St denote the supervised learning
algorithms used over the attribute features and text features respec-
tively. The co-training algorithm first uses Sa to learn a classifier
ha,1 over the attribute features for L, and St to learn a classifier ht,1
over the text features and L. It then uses the classifier ha,1 and ht,1
to label the examples in U . Let Ua,1 (and likewise, Ut,1) denote the
examples that the classifier ha,1 (likewise, ht,1) is most confident
on. Now, co-training uses the data set L ∪Ut,1 as the input to Sa
to now learn a new classifier ha,2, where the labels fromUt,1 have
come from the classifier ht,1. It repeats this process until no new
examples inU can be labeled.

We modify co-training to use the language models by using the
data to select among the available models, rather than training St
from scratch. LetM1,M2 . . . denote the language models. Formally:
at each step i , we create a setDt,i of valid language modelsMj over
the data set L ∪Ua,i as follows: we include in Dt,i any modelMj
with a substantial accuracy (e.g., 10%) on the event-specific cases
and a high accuracy on the non-event (e.g., 95%). We then define
St to be an OR-function of all the models selected in Dt,i .

Only if there is no language model in Di,t at any step i will
LOTUS learn a text classifier St from scratch. In this case, we set
St to be an ensemble classifier of constructed through the majority
vote of perceptron, random forests and stochastic gradient descent
We choose an ensemble with a variety of classifiers as it is typically
easier to learn complex hypotheses accurately with an ensemble.
The detailed parameters we use are in appendix A.

4.3 Spatio-temporal Localization
After co-training, we have a set of event-specific cases in the current
space-time windows under study. The spatio-temporal localization
step finds other space-time windows with an unusually high num-
ber of cases similar to the co-training output. To do so, we use
spatial scan statistics[15]. The SatScan[16] software implements a
likelihood test for spatial scan statistics using the underlying popu-
lation counts to compare the observed data with selected baseline
statistical models.

We use SatScan in LOTUS with the Poisson model. For the model
to apply, we need a few assumptions to hold. First, the probability
that an individual user creates a case needs to be much higher
during an event than during normal times. Second, each user creates
a case independently of other users. Third, the probability that an
individual user creates a case is similar across spatial units; thus,
the number of cases in a spatial unit is always a function of its
population. The first assumption is clearly valid; in fact, so much so
that LOTUS works even when the other two assumptions are mildly
broken. We also mitigate the third assumption by normalizing the
cases in each space-time window with its 10%-trimmed rolling
historical average (over 8 weeks).

To use SatScan, we consider a large geographic region (typically
a few neighboring US states) and a large time window (e.g., a few
days) that are expected to contain the entire event. We estimate
the number of event-specific cases in each county subdivision seen
every hour in this larger region using the classifiers Sa and St
from the co-training step. We then apply SatScan and obtain spatio-
temporal units with unusually high numbers of event-specific cases.

We use these discovered spatio-temporal units as the new set of
analysis windows in LOTUS, and we return to the co-training step.
Additional parameters are included in Appendix A.

4.4 Supplementary Analysis
After multiple iterations between the co-training and the spatial
localization steps, LOTUS identifies a set of event cases. LOTUS
finally performs a statistical test to better understand whether an
event is specific to a particular device model. For this analysis, we
track the historical population sizes of the top 100 device models
on an ongoing basis. We compare the device model proportions
in the final event cases and their respective historical proportions
with a z-test, and report outliers.

5 EXPERIMENTS
We have implemented a prototype of LOTUS that operates in real-
time. Our prototype is currently deployed and can can analyze a
day’s worth of cases (on the order of hundreds of thousands of
cases) in around 15-20 minutes on a Linux-based 2.20Ghz high per-
formance system with 32 cores and 1TB RAM. In our evaluation, we
first show LOTUS’ accuracy on synthetic data (Section 5.1) and real
data (Section 5.2), and then describe our deployment (Section 5.3).

5.1 Evaluation with Synthetic Events
Our synthetic experiments compare the accuracy of LOTUS across
events of different sizes and over regions of different populations.

5.1.1 Generating Synthetic Events. We generate synthetic data by
adding event cases from a known (manually validated) real event
with over 2000 cases into background normal data. More precisely,
we do the following: (a) we select a region to place the synthetic
event, (b) we select an event case at random from the known real
event, and (c) we choose a location for the case by selecting a
zipcode in the affected region, as a function of the user population.
We use as background normal data all cases from a time interval
with no major events; this consists of over 357.8 thousand cases.

Spatial Regions.We choose three regions to illustrate LOTUS’s
accuracy as a function of the background population. The three
regions, labeled R1, R2 and R3, have populations in the order of ten
thousand, hundred thousand and a million respectively. We restrict
the event to be within a 3 mile radius of the selected zipcode (since
this is the size of our smallest region).

Experimental Setup. For each region, we vary the number of
added event cases from 20 to 100. We select (at random) 10 labeled
event cases as positive examples, and 1000 labeled normal cases as
negative examples. We give these labeled cases as input to LOTUS
along with all the unlabeled cases. Each independent run of LOTUS
starts with a different random set of labeled examples.

5.1.2 Synthetic Event Results. Figure 7 shows LOTUS’s precision
and recall for the three regions across the range of event sizes. We
see that in all three cases, the accuracy of LOTUS improves as the
number of event cases increases. The event size at which LOTUS
achieves acceptable accuracy (i.e., high precision and high recall)
depends heavily on the underlying population. Consider the sizes
at which LOTUS’s precision and recall exceed 75% for each of the
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Figure 7: Synthetic Data Results in Regions R1, R2 and R3

regions. For region R1, this occurs with as few as 30 event cases;
for regions R2 and R3, it is around 50 event cases.

Note also that the recall is typically high (except for the tiniest
events in R3). However, the precision is low for the smaller event
sizes in R2 and R3. This is because background data has a few tiny
regions with many event-like cases outside the impacted region (in
both case types and volumes), and so LOTUS finds them. In practice,
as we see in Section 5.2, the events are far more distinguishable.

5.2 Experiments on Live Data
5.2.1 Obtaining Ground Truth. We obtain ground truth for these
events by manually labeling each case in the analysis window of
the event. We label the cases into five groups: Non-Event, Confirmed,
Power-cycled, Symptomatic, and Miscellaneous. Cases that contain
enough information so we can see that they are caused by event are
labeled as Confirmed (e.g., case notes may say the agent’s network
investigation tools indicated a network outage in the user’s loca-
tion). Cases that contain enough information so we see that they
do not relate to the event (e.g., a forgotten password; instructions
on using a feature of the device or service) are labeled Non-event.

A case may not contain enough information to be confidently
labeled as Confirmed or Non-event, because the notes are ambiguous
and the attributes are coarse-grained. Quite often, particularly at the
beginning of an event, agents are not aware of the event, and thus
cannot record incoming cases as part of the event. However, even so,
the location has an unusually high number of cases with symptoms
similar to the Confirmed cases around the time of the event. We
label these cases as Symptomatic. This label is restricted only to the
cases in the event’s space-time windows, which we obtain from
auxiliary information in network logs. Most Symptomatic cases are
likely caused by the event.

There is often also a rise in cases that are fixed by rebooting the
device during the event window. This situation especially occurs
when the underlying network outage has been fixed, but the user’s
device needs to reboot before it can function normally again. When
users call in with complaints, they are instructed to first try reboot-
ing their phone. If the event has ended, this reboot fixes the issue.
We label these cases Power-cycled. Like the Symptomatic cases, these
cases are also likely caused by the event. Lastly, any cases that do
not fall into the above categories are labeled Miscellaneous.

5.2.2 Results on Live Data. Wenowpresent our results on 19 events
with ground truth. The 19 events are caused by network outages
of various sizes and occur anywhere from small towns to large
metropolitan areas. The outages result in some loss of service, and
their causes range from from fiber cuts and power outages to storms
that impact cell towers and microcells. We start LOTUS with 10
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Figure 8: Normalized case count per event

labeled event cases (i.e., positive samples) for each of the 19 events.
With the input event cases, we automatically generate appropriate
labeled normal cases (i.e., negative samples) by sampling from
historical data, and discarding cases that are similar (in attributes
and infrequent keywords) to the labeled event cases.

Event Scale. Figure 8 illustrates the scale of the events. We com-
pare the event cases in the ground truth (the total of the Confirmed,
Symptomatic, and Power-cycled cases) with those discovered by
LOTUS. For proprietary reasons, the raw number of cases is nor-
malized (by scaling by a number). Note that the number of event
cases span over two orders of magnitude. LOTUS discovers both
small and large events (and does so accurately, as we show next).

Figure 9 shows the relative number of cases with each label for
the ground truth. Specifically, for each event, we normalize the raw
case counts of each label by the total labeled ground truth for that
event. We see that the Non-event cases constitute the vast majority
of cases, especially for the small events. For many events, the Non-
event cases are an order of magnitude bigger than the remaining
cases. Of the remaining cases, the Confirmed cases are typically
the majority. The Symptomatic cases are next in size, substantially
exceeding the Power-cycled cases. The number of Miscellaneous
cases per event is marginal.

LOTUS Accuracy Results. We first examine LOTUS results on all
event cases. Figure 11 shows the recall for each type of event case.
For most events, LOTUS discovers over 80% of the Confirmed cases.
The recall is a little lower for the Symptomatic and Power-cycled
cases: for 14 events, LOTUS discovers over half the Symptomatic
and Power-cycled cases; for 10 of those 14, the recall exceeds 70%.

The only exception to these results is Event-8, where LOTUS
discovers 71% of the Confirmed cases and 42% of the Symptomatic
cases as shown in Figure 11. Event-8 is a challenging event for
LOTUS because the spatial units do not align completely with the
network failures. Event-8 covers a large geographic area with many
rural areas and a densely-populated metropolitan area. Event-8 is
caused by a few link failures. Themetro area is covered by only a few
spatial units, but is served by many links, and so the entire area does
not lose service. The increase in event-related cases in the metro
area is insufficient compared to its population, and so LOTUS does
not discover this area during spatio-temporal localization. Indeed,
the cases LOTUS missed in Event-8 were all in this metro area.

LOTUS also discovers very few Non-event cases. Figure 12 shows
that the precision exceeds 95% for most events (i.e., fewer than
5% of the cases LOTUS discovers are Non-event cases). The one
exception is Event-11, where the precision is 85%. Event-11 was
caused by a storm over large geographic area, which affected towers
in many spatial units in the area. A number of users in the storm-
affected regions called in with cases similar to those of Event-11 (but
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Figure 10: Comparing LOTUS performance with alternate approaches: LOTUS has highest F1-measure on all 19 events
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additional information showed that these cases were Non-event).
Because the location and the symptoms of these Non-event cases
matched Event-11, LOTUS reported these Non-event cases as well.

Finally, we show the F1-measure for LOTUS (and for alternate
approaches) in Figure 10. The F1-measure for LOTUS is consistently
high for all events; it exceeds 75% for 16 of the 19 events.

Comparison with Alternate Approaches. We also compare LOTUS
to simpler approaches: vanilla co-training, vanilla SatScan, cluster-
ing, and a baseline keyword search currently used by operators. We
sketch each algorithm briefly here. First, vanilla co-training runs
co-training alone on the case data, started with the same labeled
data and space-time windows as LOTUS. Next, consider vanilla
Satscan. Satscan is unsupervised, so we first simply run SatScan on
the same space-time window as LOTUS. Satscan reports space-time
clusters which have significantly higher cases than usual. From
these clusters, we select every cluster that has an initial labeled
event case, and output all cases in that cluster. Third, we compare
to a clustering approach. Here, we run k-means clustering on all
the cases in the same space-time windows input to LOTUS using
the same features (parameters in Appendix A). We report any clus-
ter of cases which contains an initial labeled event case. Finally,
we compare to a keyword search. We use common keywords that
match how user-observed symptoms and the outage are typically

recorded by agents, and report all cases in the analyzed space-time
window that match the keywords.

Figure 10 shows the F1-measure of each of these approaches. In
all four approaches, for most events, the F1-measure is substantially
lower than LOTUS. The only exceptions are Event-10 and Event-13
where the F1-measure of vanilla SatScan approaches LOTUS; this is
because these events are mostly isolated spatially, so it is relatively
easy for SatScan to identify them accurately. The F1-measure is so
low primarily because the precision is often extremely low (under
25%) for all approaches, and indeed, for no event does the precision
exceed 65%. These results also show that each individual algorithmic
component of LOTUS (i.e, co-training and SatScan) is unable to
accurately identify user impact by itself.

5.3 Deployment
LOTUS has been deployed since August 2018, and has been made
available to many care agent teams. LOTUS is triggered through
an API that allows the network operators to provide initial labeled
cases and to select parameters for analysis. Due to data availability
limitations, LOTUS currently operates with an end-to-end delay of
2 hours. Thus far, LOTUS has assessed the user impact of over 200
events.

Case Studies.We present 2 case studies from the events LOTUS
has assessed to illustrate the user impact LOTUS finds.
(1) Unusual User Impact: First, we show how LOTUS provides user
perspective that is complementary to the network perspective. A
network problem occurred affecting data connectivity in multiple
states, and was fixed a few hours later. The network problem re-
sulted in a large increase in the number of data complaints in the
affected region. However, even after the problem was fixed, there
was a second large increase in data complaints the following morn-
ing. This second increase was caused by users who were still unable
to use data, but were able to do so once an agent asked them to
power-cycle their devices. LOTUS detected this increase the next
morning when compared to the normal. Thus, even though network
had recovered, there were still issues from the user perspective, and
LOTUS provided us this insight.
(2) Typical User Impact: Next, we describe an event in which LOTUS
discovers user impact that is aligned with the root cause, i.e., tower
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(a) Tower outages (b) All cases (c) Ground truth (d) LOTUS results
Figure 13: Case study: Anonymized locations of tower outages, all cases, ground truth of Event-5 and LOTUS-identified cases.

outages. For Event-5 (from Section 5.2), we obtained network tick-
ets indicating the towers that suffered an outage. The four maps in
Figure 13 show the main spatial unit where the event occurs, with
location details anonymized for proprietary reasons. Figure 13(a)
shows the locations of cell towers where an outage occurred (rela-
tive to the anonymized locations). Figure 13(b) shows the locations
of all the cases seen in the surrounding geographic area during the
analysis window. Figure 13(c) shows the ground truth for the event.
Figure 13(d) shows the cases that LOTUS discovered.

We see that LOTUS discovers event cases inside themain affected
spatial unit; this is where they are concentrated. But it does not
discover most event cases outside the affected spatial unit; these
are more scattered. This is typical; an event usually consists of one
or more concentrated clusters, surrounded by sparser regions of
cases. LOTUS is designed to discover the concentrated clusters.

Lessons Learnt. LOTUS works well when the spatial unit is
aligned with the event. This happens most of the time because
the events and the spatial units are usually both aligned with the
underlying geography. However, if there are multiple simultaneous
events, LOTUS does not always distinguish them well. LOTUS
requires that distinct events have non-overlapping symptoms if
they occur in the same or neighbouring locations; for example, if
two events occur with similar symptoms in neighboring locations,
LOTUS will report one (combined) event. In our deployment, these
situations rarely occurred and did not pose practical issues. The
only practical bottleneck for LOTUS was the availability of real-
time data. The closer to real-time that LOTUS operated, the more
useful LOTUS became.

6 RELATEDWORK
The problem of detecting spatially localized patterns in unstruc-
tured text has been studied on a variety of data [5, 6, 11, 18, 23];
however, these study macroscopic trends in spatiotemporal pat-
terns, and do not apply to our small-scale events. [9] presents topic
“burst” models, but does not apply when the bursty topics appear
in large amounts in the background data.

Another line of work explores customer feedback directly; we
describe the most related here. [3] aims to detect service-impacting
events in customer tickets, but focuses on detecting large new pat-
terns in test data that do not appear in training data. [12] studies
customer feedback to understand characteristics of customer com-
plaints in cellular networks. [17] studies customer tickets together
with network metrics to automate diagnosis in IPTV. LOTUS is
orthogonal to all these works.

7 CONCLUSION
We presented LOTUS, a system for identifying impacted users of a
common root cause from noisy user feedback. LOTUS combines
several modern machine learning techniques (co-training, spatial
scan statistics, word vectors and deep sequence learning) in a novel
semi-supervised learning framework. LOTUS is highly accurate
even though it is initialized with only a little non-representative
labeled data. LOTUS has been deployed for several months for use
by customer care agent groups.
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A APPENDIX
We now present a detailed discussion of the parameters that we
used in our framework and experiments to support reproducibility
of results.

A.1 Framework Parameters
In this section, we discuss the various parameters used in different
parts of the LOTUS framework.

A.1.1 Word Vector Parameters. We use the gensim [22] implemen-
tation for training word embeddings. As described in Section 4.1,
we build 300-dimensional real-valued vectors using the contextual
bag-of-words model with hierarchical softmax. We use a window
of 4 words before and after the word. We set a threshold of 50 for
the word’s minimum frequency of occurrence in the corpus. We
train with 8 parallel workers. All other parameters are left to their
default values in gensim.

A.1.2 Co-training Classifiers. Next, we describe the parameters
of different classifiers we use inside the co-training component of
LOTUS.

Attribute classifier Sa . As mentioned in Section 4.2.1, we use the
standard DNF learning algorithm. This algorithm is designed for
data with no noise, and we describe it briefly here. It starts with
the entire data, and simply selects a conjunction c that matches the
most positive examples in the data without matching any of the
negative examples in the data. It adds c to the hypothesis (DNF), and
removes the matched positive examples from the data. It repeats
this process until all positive examples have a matched conjunction
in the hypothesis DNF.

Because our data has a lot of noise, we modify this algorithm
slightly to be practically applicable. We choose conjunctions (i.e.,
sets of attribute values) that account for at least 5% of the (current)
positive examples, and less than 1% of the (current) negative ex-
amples, and add them to the 3-DNF; we never remove from the
DNF. This algorithm works because a small number of conjunctions
(typically less than 20) are sufficient to represent most of the event
cases.

Deep Learning Language Models. As discussed in Section 4.2.2,
we pre-train 8 language models for use inside co-training: 7 for
technical problems and one for a common resolution. For these
models, we used a 3-layer deep network appropriate for sequence
learning, and our design choices for this neural network are based
on current best practices. We use keras [4] with the Tensorflow
backend for the neural networks. We describe here the main param-
eters, and any additonal ones that we changed from their default
values.

Our first layer is a 128-node standard LSTM, as LSTMs are a
commonly-used layer for learning from sequences. For each cell of
the LSTM, we use the default hyperbolic tanh function for the input
activation, and the default hard sigmoid function for all other gates.
The cells are initialized with Xavier initialization for the kernel, a
random orthogonal matrix for the recurrent weights and zeros for
the bias weights. We also add in a dropout rate of 0.2 for both the
regular and the recurrent weights, in order to ensure robustness.
Our second layer is a hidden fully connected layer of 16 nodes, with

sigmoid activation functions. Once again, the weights are initialized
with Xavier initialization, and we incorporate a dropout rate of 0.2
for robustness. Our final layer is the output layer with one node,
which is fully connected to the hidden layer of 16 nodes. Once again,
we use a sigmoid function for activation. We use sigmoid functions
for all activations in the second layer and the output layer, because
they train and converge faster, and as the neural network is only 3
layers deep, it does not suffer from vanishing gradient problems.
Our models were trained with the Adam [14] learning algorithm,
with a learning rate of 0.0001 and logistic loss. All other parameters
were set to their default values in the keras library.

Ensemble Text classifier St . As discussed in Section 4.2.3, we se-
lect from among pre-trained language models when possible, and
only if none of the language models are suitable do we construct
a classifier from scratch. Here, we use an ensemble classifier con-
structed through a majority vote of perceptron, random forests,
and stochastic gradient descent. For each individual classifier in
the ensemble, we consider its label as event if its probability pre-
diction exceeds a threshold of 0.85. We use the implementations
in the scikit-learn [21] library, and describe below where we
modify the default parameter values for each algorithm. We modify
the weights of classes for all algorithms: we weight the non-event
cases 10 times the event cases, to minimize false positives. We
use random forests with 100 trees and a maximum depth of depth
of 4, and set a minimum leaf size to be 0.005% examples. We use
two instances of stochastic gradient descent with smoothed hinge
loss (modified_huber), one with L1 regularizer, and one with L2
regularizer.

A.1.3 Spatio-temporal Localization. We discuss here the parame-
ters of the input data to SatScan, and the parameters that we set in
the running of the SatScan’s algorithm.

Input Data for SatScan. The time units we use are hourly win-
dows, since the number of cases exhibits a diurnal pattern (as
mentioned in Section 2.1). The spatial units we use are county
subgroups [1] (discussed in Section 2.1). We use US Census Bu-
reau [1] Cartographic Boundary Shapefiles to obtain latitude and
longitude for each spatial unit (i.e., county subdivision). We ob-
tain distances between spatial units with the standard Vincenty
formulae in geospatial libraries.

We apply both Sa and St on the cases in each space-time unit,
and include in the estimates of event-specific cases any case where
at least one classifier has high confidence. We use a threshold of
0.7 for St ; Sa is binary so does not need thresholds.

SatScan Analysis Parameters. As described in Section 4.3, we use
Satscan’s discrete Poisson model to model the case count in each
spatio-temporal unit (i.e., number of cases in spatio-temporal unit
comes from a Poisson distribution, according to a known underly-
ing population at risk). We use the retrospective space-time analysis
type. We use a circular window shape to identify the candidate geo-
graphical clusters for the spatial scan statistic. We allow SatScan to
identify secondary clusters as well. We report only non-overlapping
secondary clusters. We set the maximum spatial cluster size to be
20% of the population at risk. We set the number of Monte Carlo
simulations to be 999, and we use a p-value of 0.01 as our cutoff. All
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remaining parameters are set to their default values in SatScan’s
spatio-temporal Poisson analysis sample file.

A.1.4 Supplementary Analysis. We use a one-sided p-value of 0.01
as cutoff for the z-test. In addition, to minimize false alerts of device
events, we perform the z-test only for models that account for at
least 10% of the event cases. In a device event, the affected device
models occur in large proportions in the event cases, so even with
this additional step, we continue to discover device events, but this
way, we do not output models with small deviations from their
respective historical proportions.

A.2 Experimental Parameters
We have already discussed the parameters we use for LOTUS ex-
periments in Section 5. We discuss here the parameters we use for
alternate experimental approaches that we compare to LOTUS.

All alternate approaches are performed on the data in the same
initial spatio-temporal window input to LOTUS (i.e., 1-2 days, 2-
4 states). Among the alternate experimental approaches, vanilla
co-training and vanilla SatScan use the same parameters as the co-
training and SatScan components of LOTUS. The baseline keyword
search has no parameters, as it simply selects matching cases from
the data under analysis. We present here the parameters for the
k-means clustering-based approach.

Parameters for vanilla clustering approach. As discussed in Sec-
tion 5.2, we start with all the cases in the same spatio-temporal
window input to LOTUS. We convert each case into a feature vec-
tor using its attributes and text with the same feature extraction
module as LOTUS. We then run k-means on the feature vectors
for k = 10, 20, . . . 100. We pick the best k using the elbow heuristic.
We pick a separate k for each event that we analyze, since some
spatio-temporal windows may have higher diversity in cases than
others), and use this to report our results in Figure 10 in Section 5.2.
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