
Autonomous Services Composition in Domain 2
Mazin Gilbert, Anwar Syed Aftab, Farheen Cefalu, Pamela Dragosh,
Rittwik Jana, Serban Jora, Thomas Kirk, John Lucas, Arthur Martella,

John Murray, Sundar Ramalingam, Christopher A Rath, Shu Shi, Rich Wright, Avi Zahavi

AT&T is embarking on an exciting journey to

revolutionize its network by transforming itself

into a software company running the largest

and most intelligent programmable cloud on

the planet. Indeed, the network of Domain 2.0

(D2) will be intelligent software systems and

applications operating on general-purpose

commodity hardware [1]. This transformation

will not only drive down CAPEX, OPEX and help

to configure our network with less human

intervention, but it will also create significant

opportunities to scale and monetize existing

and new intelligent services. This

transformation will enable AT&T's D2 to

establish a new services ecosystem equivalent

in concept to the application ecosystem

adopted by the Apple iOS and Android. D2 will

facilitate mass marketing existing and new

services, and lower the barrier to entry for

enterprise and small business customers to

create new innovative services.

This paper will provide a demonstration of how

intelligent services can be realized within the D2

architecture. An intelligent service collects

information about resources (users, devices,

networks and applications) used to deliver the

service and about the environment in which it

operates. It then makes decisions based on this

information and domain knowledge which

includes adapting and personalizing the service

for the users consuming it. An intelligent service

receives feedback on its performance and

learns. There are primarily three attributes that

characterize an intelligent service, known as

PAD (personalized, adaptive, and dynamic). A

predictive personalized service is one that

anticipates a user's need and proactively takes

intelligent actions and recommends valuable

and timely personalized information. An

adaptive service learns from its past actions of

all users and adjusts its behavior to provide

superior service quality. A service that is

dynamic is one that is robust and is able to

survive and self-repair or self-organize itself

from possible service interruptions.

In this demo paper, Autonomous Services

Composition (ASC) is one example of an

intelligent service (see Figure 1). ASC's vision is

to create a `services marketplace' that provides

a holistic customer experience to create novel

services by leveraging advanced tools like

recommenders and expert systems, real time

customer care collaboration and big data

analytics. Service composition is a mechanism

for integrating applications/services from

predefined component modules (e.g. resources)

and deploying those modules where and when

they are needed. It is the service linking

capability which provides the basic mechanism

for defining new applications, managing

application lifecycles and implementing elastic

services in the D2 environment. By rapidly

integrating components and sizing those

components dynamically, applications can be

built to handle varying user loads. By selectively

deploying component modules based upon

affinity rules, multiple time-critical functions

can be directed to share common infrastructure

to minimize latency, while high availability can

be maintained by directing redundant

components to execute on geographically

separated servers.

Example: Consider the following set of basic

services: a) data connectivity between two

endpoints (e.g. switched Ethernet service like

Gamma), b) a data `splitter' service that takes

data from an endpoint and sends it to two or

more endpoints, c) a video anomaly detection

service that takes a video stream and sends

alarms to an endpoint, and d) a data archiving

service. A small-town bank with a video

surveillance camera in the lobby wants to send

that video stream to a home office while away

from the bank. In ASC, we configure the basic

connectivity service with the endpoint

locations. Alternatively, alerts can be sent when

something unexpected happens. In ASC, we can

compose by taking the video output from the

data splitter service and piping it into the

anomaly detection service, and configure it to

send alerts out. There may be a need to store

the video for six months as well as receiving the

alerts. In all of these cases, ASC is creating the

individual service orders for the basic services,

and the overall application control that shows

how they are stitched together.

Challenges and problems solved

There are many challenges that service

composition presents.

NFV modeling: ASC uses items from the

resource, service and product catalogs. There is

a need to model these Network Function

Virtualization (NFV) elements before

composition can be realized. We have extended

Open Topology and Orchestration Specification

for Cloud Applications (TOSCA) to model these

products. This facilitates rapid service

composition in a manner that is verifiable at

different stages of the software lifecycle. The

starting point of composition is a catalog of

third party NFVs. We are creating an ecosystem

that will bootstrap our vendors to populate the

resource and service catalogs using TOSCA.

ASC system architecture: The architectural

approach we have adopted for the ASC system

enables rapid iterative development, an elastic

scaling path as utilization grows, and flexibility

in terms of evolving requirements and addition

of new functionality. The subsystems of ASC are

designed around a microservice architecture, in

which components interoperate via a

lightweight distributed message bus (Vert.x).

The carefully abstracted messaging pub/sub

interface facilitates extensibility (e.g. as we add

semantic assistants from the intelligent

toolbox). Finally, the cloud-based ASC cluster

can easily scale horizontally to meet elastic

demand -- subsystem replicas can be deployed

in seconds on lightweight containers as

utilization requires.

Composition is ultimately a complex data-driven

process, using not only an extensive product

catalog and asset inventory, but also

representations of the domain expertise that

goes into building complex composite services.

We're using graph database technology to allow

natural ways to represent the semantic

connections among catalog and inventory

items, workflow state, and related domain

knowledge. The database is dynamically

extensible to accommodate learning

throughout the lifecycle, and is continuously

available to intelligent agents overseeing and

augmenting the composition process.

Integration with D2: ASC needs to finally

execute the composed order in the D2

environment. A `shopping cart' like experience

has been created that provides the end

customer to discover, create, deploy and watch

the service. ASC needs to interoperate with the

Service Design and Creation (SD&C) subsystem

to fulfil the order. ASC also communicates with

a range of D2 entities (e.g. DCAE engine in

ECOMP, A&AI for real-time asset information)

to monitor the service and present real-time

reports in a dashboard using analytics and

visualization tools.

Expert systems and collaboration: A natural

part of the composition process is to allow the

customer to discover services and products that

are related. An expert system is needed to

suggest or recommend compatible products to

guide successful compositions. Another key

feature of ASC is designing for collaboration; we

know that composition is a complex activity

often involving many participants, so we have

designed the ASC environment to be a

collaborative workspace from the start. Another

aspect of composition of AT&T services is the

complexity and richness of the workflow, so the

ASC environment seeks to provide seamless

support of the entire composition lifecycle. To

make the ASC environment maximally

accessible, the user interface is entirely

browser-based, leveraging HTML5 technologies

like WebGL and WebRTC to enable a powerful

and effective user experience. Finally, we have

built a web RTC based collaboration

environment for customer care needs.

Figure 1 - Autonomous Services Composition Target Architecture

References

[1] Chiosi M., “AT&T Domain 2.0 Vision White Paper”,

http://www.att.com/Common/about_us/pdf/AT&T%20Domain%202.0%20Vision%20White%20Paper.pdf, Nov.

13, 2013.

http://www.att.com/Common/about_us/pdf/AT&T%20Domain%202.0%20Vision%20White%20Paper.pdf

