
Distributed Software Defined Networking Controller Failure Mode and Availability
Analysis

Paul Reeser
Advanced Technology & Systems

AT&T, Inc.
Middletown, USA
preeser@att.com

Guilhem Tesseyre
Cloud Solution Group
Juniper Networks, Inc.

Sunnyvale, USA
gtesseyre@juniper.net

Marcus Callaway
Technology Service & Operations

AT&T, Inc.
Atlanta, USA

mc8126@att.com

Abstract— Given the critical role Software Defined Networking
controllers play in cloud computing and networking
architectures, understanding their resiliency profile is crucial.
Using OpenContrail as a reference architecture, we analyze the
typical distributed controller failure modes and their effects on
the control and data planes. We then develop hardware- and
software-centric theoretical availability models for a variety of
physical topologies and software modes of operation. These
parametric models are used to predict availability and quantify
sensitivity to underlying platform and process resiliency. The
results suggest that the distributed control plane can achieve
very high availability, while the host data plane may achieve
much lower availability due to inherent single points of failure.

Keywords- SDN, NFV, FMEA, Availability, Modeling

I. INTRODUCTION
OpenContrail [1] is one of many Open Source and vendor

extensible overlay platforms for Software Defined
Networking (SDN) within and between cloud environments,
including ODL [2], ONOS [3], Floodlight [4], NSX [5], etc.
OpenContrail consists of two main components: the
Controller and the vRouter. The Controller is a logically
centralized but physically distributed SDN controller
responsible for providing the configuration, control, and
analytics functions of the subtending virtualized network. The
vRouter (similar to the Open vSwitch [6]) is the forwarding
plane of a distributed router that runs in the hypervisor of a
virtualized server, and extends the network from the physical
routers and switches in a data center into a virtual overlay
network hosted in the virtualized servers. The OpenContrail
Controller provides the logically centralized management or
control plane, and orchestrates the host vRouter data planes.

From a high availability standpoint, one of the compelling
benefits of distributed SDN controllers such as OpenContrail
is that the logically centralized Controller can be highly
physically distributed. As described in section II, the
Controller consists of multiple node types, each of which has
multiple instances for increased availability and horizontal
scaling. Those node instances can be physical servers or
virtual machines (VMs). Multiple node types can be combined
on a single server or spread across multiple physical servers.

Given the critical role that SDN controllers play in cloud
computing and networking, understanding their resiliency
profile is crucial. In this work, we analyze OpenContrail 3.x
process failures modes and their effects on the Controller
control plane and the subtending host vRouter data planes

within a cloud environment (data center). We then develop
hardware- and software-centric theoretical availability models
for a wide variety of physical hardware (HW) deployment
topologies and software (SW) modes of operation. These
parametric models are used to predict availability and quantify
sensitivity to underlying HW and process resiliency.

Although OpenContrail is used as an example, our goal is
to develop a flexible, extensible analytic modeling framework
that can be used to assess the relative availability of any
distributed SDN controller in a variety of HW configurations.
From a Controller SW standpoint, we fully encapsulate the
implementation (OpenContrail 3.x in this case) into two tables
(II and III) and develop the model framework around these
inputs so that other implementations can be analyzed simply
by populating these two tables appropriately. The parametric
model framework is thus highly flexible and easily adaptable
to other distributed SDN controller node architectures. From
a HW deployment standpoint, we consider topologies
spanning the extremes from the smallest reasonable scenario
(minimum number of VMs required to support the quorum,
each on a single host, all in a single rack) to the largest
necessary scenario (every role copy in its own VM, each on
its own host, distributed over a quorum number of racks).

Much prior work has been done to quantify the impact of
HW failures and SW faults on forwarding plane availability in
SDN-controlled networks [7-13]. These works model each
SDN controller data center as a single entity, and focus on
availability optimization at the network of controllers level.
As an example, [9] develops an overall availability model of
the high-level network of links, switches, routers, and
controllers comprising an SDN-controlled backbone network.
The SDN controller node itself is modeled as a ‘K of M’
cluster of identical HW/SW elements. In these works,
‘distributed’ means that SDN control is spread across multiple
controller nodes in a backbone network of data centers.

In contrast, the focus of this work is to decompose the
SDN controller node itself into the various roles (network
routing configuration, forwarding plane control, data
collection and analytics, etc.). We then drill down to the
controller process level, capturing such issues as availability
critical path process counts, inter-process dependencies, and
quorum requirements. Here ‘distributed’ means that the intra-
data center SDN controller SW roles are physically spread
across a variety of HW layout and SW container topologies.
To our knowledge, this analysis is the first effort of its kind.

In section II we summarize the OpenContrail 3.x SW
architecture, and in section III we describe its process failure

223

2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-0746-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPASS.2019.00035

modes and resiliency impacts. Next, in section IV we propose
various reference HW deployment topologies as a concrete
framework for the subsequent analytic modeling. Then, in
section V we develop HW-centric parametric availability
models to analyze the impact of physical deployment
topology, and in section VI we develop SW-centric parametric
availability models to analyze the impact of process modes of
operation. Finally, section VII provides concluding remarks.

II. OPENCONTRAIL ARCHITECTURE
OpenContrail is segmented into several functions from an

architectural perspective, called node types or roles. This
segmentation is intended to leverage the resiliency capabilities
of a scalable architecture of loosely coupled services.

The Config node provides a means for clients to consume
services by transforming a high-level networking request into
a lower level object. This object is then passed to the Control
node, and ultimately to the vRouter to enforce network
policies. A northbound API server exposes configurable
objects to install configuration state and perform create-read-
update-delete operations. The API process is responsible for
storing/loading permanent data to/from the database (DB). A
Cassandra cluster is used to persistently store config data, and
a Zookeeper ensemble is used to guarantee uniqueness of
system-generated IDs. A schema transformer is implemented
to translate the high-level data into the low-level object. An
Interface for Metadata Access Points (IF-MAP) server
provides a mechanism to write the transformed low-level data,
and a southbound interface to push this data to the Control
nodes. RabbitMQ is used as a messaging bus for
communication between the processes. The discovery server
is used to locate other nodes providing a particular service.

The Control node (IF-MAP client) retrieves information
from the Config node and passes the data to vRouter agents,
gateways, and other Control nodes. All Control nodes are
active, and synchronize their routing information using
Border Gateway Protocol (BGP). The vRouter agents running
on the Compute hosts connect to two Control nodes
simultaneously, and download their configuration and routing
information using this established communication channel.

The Analytics node collects and exposes operational data
for the cluster, including logs, stats, queries, alarms, and event
streams. A Cassandra cluster is used to store Analytics data.
Data generators (processes, and physical or virtual devices)
send their data to the collector, which then uses a Redis cache
to store real-time data or a Cassandra DB to store persistent
data. A Kafka bus is also used to stream events and alarms.

The Database node uses Cassandra for both the Config
and Analytics roles. Separate Cassandra DBs are used for the
Config and Analytics data. In addition, the Config role uses
Zookeeper, and the Analytics role uses Kafka. Each of these
four components is clustered in a 2N+1 fashion, where N is
the number of failures supported. We assume that N=1; that
is, we consider the minimum 3 node deployment where ‘2 of
3’ nodes are required for each of these four component
quorums. Generalization to N>1 is straightforward.

The vRouter is the forwarding element that acts as a data
plane (DP) for the workloads running on the Compute servers
across the cluster, replacing any native solution for workload

networking. The vRouter is composed of two parts, the
vRouter agent running in user space and the vRouter module
running in kernel space (optionally replaced by the vRouter
DPDK module running in user space). The vRouter agent
performs all policy evaluation (such as security, NAT,
mirroring, multicast, or load-balancing) by examining the
flows going through the vRouter. The routing information is
automatically imported and exported based on network
policies defined on the Controller, and the vRouter performs
all necessary bridging or routing. OpenContrail uses overlay
networking to carry workload traffic between Compute nodes,
in order to provide flexibility to the virtual network topology
created on top of the fabric/underlay network. The vRouter is
in charge of encapsulating traffic egressing the server.

Fig. 1 shows the totality of relevant OpenContrail 3.x
processes within each node (role). In addition to the unique
processes within each role described previously, each of the
roles has a supervisor process and a nodemgr process. These
common processes are described in more detail in section III.

III. SOFTWARE FAILURE MODE ANALYSIS
In the process failure mode description to follow, we

assume that N=1 in the 2N+1 deployment configuration
described above. That is, we consider a minimum 3-node
deployment where ‘2 of 3’ nodes are required for Controller
quorum. However, at the process level not all processes must
meet this ‘2 of 3’ requirement. As described below, some
processes do require ‘2 of 3’ instances to be up, but some
require only ‘1 of 3’ instances, and some in fact are not
strictly required at all (‘0 of 3’ instances).

Two processes are common across all OpenContrail roles,
the supervisor and the nodemgr processes. Specifically, there
are five supervisors and five nodemgrs common to the roles.

Each supervisor is dedicated to its respective node and
role. From a resiliency standpoint, the main function of the
supervisor is to auto-restart any failed processes within its
node-role. Failure of the supervisor itself requires the entire
node-role to be restarted (either immediately or at a later time
such as a maintenance window). At the time of node-role
restart, the other processes in the node-role must be manually
killed, and the supervisor must be manually restarted, so that
it can then auto-restart the other processes under its oversight.
Until then, any process failures within that node-role require
manual restart, but the remaining node-role functionality is
unimpaired. In fact, the supervisor is a ‘0 of 3’ process; all
instances can fail and functionality is unimpaired.

Figure 1. OperContrail 3.x processes by role.

Role Process Role Process Role Process
config-api analytics-api vrouter-agent
discovery alarm-gen vrouter-dpdk
schema collector vrouter-nodemgr

svc-monitor query-engine supervisor-vrouter
ifmap redis

device-manager analytics-nodemgr
config-nodemgr supervisor-analytics

supervisor-config database (Config)
control zookeeper (Config)

dns database (Analytics)
named kafka (Analytics)

control-nodemgr database-nodemgr
supervisor-control supervisor-database

Co
nf

ig
Co

nt
ro

l

Vr
ou

te
r

Da
ta

ba
se

An
al

yt
ic

s

224

Each nodemgr is dedicated to its respective node and role.
If a nodemgr fails, other processes in that node-role continue
to function, but process state visibility is lost (process status
data is not fed to the associated Analytics collector process)
until the nodemgr is auto-restarted by its supervisor, but the
remaining node-role functionality is unimpaired. In fact, the
nodemgr is also a ‘0 of 3’ process; all instances within a role
can fail and functionality is unimpaired.

With the exception of the supervisor processes, failure of
any instance of any process of any role in any node does not
impact the entire node-role in which it resides; that is, the
other functioning processes in the node-role continue to
function and are not impacted when that process is restarted.

Table I summarizes the node processes and failure modes.
All Config, Control, and vRouter processes are auto-restarted
by their supervisor. All Analytics processes are auto-restarted
by their supervisor except for the redis process, which is not
under supervisor control and requires manual restart. All
Database processes require manual restart except for the
nodemgr process, which is auto-restarted by the supervisor.

The control process plays a special role in host vRouter
DP functionality. In particular, the per-host vrouter-agent
process (described later) is normally connected in round-
robin fashion to two control processes in separate Control
nodes at any point in time. Thus, normally roughly equal
numbers of all host vrouter-agent processes are connected to
control-1 and -2, to control-1 and -3, and to control-2 and -3.

If control-1 fails, all vrouter-agent processes connected to
control-1 will rediscover (typically within a minute) the
unused control process, and every vrouter-agent will then be
connected to control-2 and control-3. If control-2 then fails,
every vrouter-agent will then be connected to only control-3.
In this scenario, the host DPs are not interrupted because every
vrouter-agent is always connected to at least one control
process. If control-3 subsequently fails, then every host DP
will go down because BGP forwarding tables will be flushed.

TABLE I. OPENCONTRAIL 3.X NODE PROCESS AND FAILURE MODES

Role Process Name SDN CP Host DP

Config

config-api 1 of 3 0 of 3
discovery 1 of 3 1 of 3
schema 1 of 3 0 of 3

svc-monitor 1 of 3 0 of 3
ifmap 1 of 3 0 of 3

device-manager 1 of 3 0 of 3

Control
control 1 of 3 1 of 3

dns 0 of 3 1 of 3
named 0 of 3 1 of 3

Analytics

analytics-api 1 of 3 0 of 3
alarm-gen 1 of 3 0 of 3
collector 1 of 3 0 of 3

query-engine 1 of 3 0 of 3
redis 1 of 3 0 of 3

Database

cassandra-db (Config) 2 of 3 0 of 3
cassandra-db (Analytics) 2 of 3 0 of 3

kafka 2 of 3 0 of 3
zookeeper 2 of 3 0 of 3

vRouter
vrouter-agent 0 of 1 1 of 1
vrouter-dpdk 0 of 1 1 of 1

In the unlikely event that two control processes fail
simultaneously, then the one-third of vrouter-agent processes
connected to those two Control nodes will drop packets until
the affected vrouter-agent processes connect to the remaining
control process. Once connection is reestablished, the host
DP will resume without the need for process restart. For the
analysis to follow, we assume that the impact of simultaneous
control process failures on host DP availability is negligible.

Similar behavior applies to the dns and named processes.
Each host is attached to two Control nodes, where DNS
requests from VMs on that host are processed. The ‘1 of 3’
requirement for host DP availability means that we must have
at least one of the collection {control + dns + named} on the
same Control node available. For example, having only
control-1 and dns-2 and named-3 available is not sufficient
for host DP availability, and packets will be dropped. Thus,
the collection {control + dns + named} is a ‘1 of 3’ process
block required for DP availability across all hosts.

The four Database processes are the only ‘2 of 3’ quorum
processes in the Controller, and a lack of quorum of any of
these processes only impacts the SDN CP, not the host DP.

Any vrouter-agent or vrouter-dpdk process failure takes
down the DP for the entire host. The agent is essential to
evaluate what policy to apply to a flow, so if a vrouter-agent
fails it will impact the DP traffic for that host. Prefixes of VMs
sitting on that host will disappear from the routing
tables/advertisements. In a DPDK deployment, the vRouter
runs in user space and uses the DPDK library to optimize
access to the underlying HW. If the vrouter-dpdk process fails,
then the vRouter function cannot be executed.

IV. REFERENCE DEPLOYMENT TOPOLOGY
Theoretical availability analysis of any distributed SDN

controller requires that we define a specific HW deployment
topology. In particular, we must specify layout of Controller
roles on VMs or containers, as well as layout of Controller
node VMs on physical host servers and on common HW
elements such as racks. Specifically, we consider three
scenarios called Small, Medium, and Large. We again
consider the minimal case of a 2N+1=3 Controller node
cluster for the analysis. The approach can easily be extended
to larger cluster configurations.

In the Small topology (top left of Fig. 2), the four critical
Controller roles (confiG, Control, Analytics, Database) run
within a single VM (labeled GCAD). Each of the three
Controller node VMs (GCAD1-3) run on three separate hosts
(H1-3) in a single shared rack (R1). Next, in the Medium
topology (top right of Fig. 2), the four Controller roles run in
separate VMs (G1-3, C1-3, A1-3, and D1-3). Each of the three
sets of Controller node VMs run on three separate hosts (that
is, G1 … D1 all run on H1, G2 … D2 on H2, and G3 … D3
on H3). Hosts H1 and H2 still reside in a shared rack (R1) but
now H3 resides in a separate rack (R2). Finally, in the Large
topology (bottom right of Fig. 2), the four Controller roles
again run in separate VMs, but now each of the 12 Controller
node VMs runs on its own separate host (G1 on H1, C1 on H2,
…, D3 on H12). Each of the three sets Controller node VMs
and hosts now run in three separate racks (H1-4 running
node 1 VMs G1 … D1 in R1, H5-8 in R2, and H9-12 in R3).

225

Figure 2. Reference hardware deployment topologies.

V. HW-CENTRIC AVAILABILITY ANALYSIS
Given the three reference HW deployment topologies, we

can compute the Controller availabilities. Let AC denote the
availability of an individual instance of any Controller role,
and assume for simplicity that the availability of each role is
the same (i.e., the availabilities of each instance of Config,
Control, Analytics, and Database roles are all equal). Let AV
denote availability of an individual VM (including guest OS).
Let AH denote availability of a host (including host OS and
hypervisor). Let AR denote availability of a rack. Finally, Let ܣ/(ߙ) denote availability of at least m of n parallel blocks,
where α denotes the availability of a single block. Then

(ߙ)/ܣ = ቊ ∑ ቀ݊݅ቁିୀ αି(1 − (ߙ ݉ ݎ݂ ≤ ݊0 ݉ ݎ݂ > ݊ .
Block availability α can represent a single element, such

as a role instance, or a combination of elements in series, such
as {role+VM+host}. For simplicity, shorthand notation ܣ/
is used in lieu of ܣ/(ߙ) in the results to follow, and the
value of α is specified in the particular context.

For this HW-centric analysis, we do not consider
individual processes within a role. Rather, we assume that
each of the 12 Controller nodes is an atomic element. Thus, in
a 3-node cluster, at least 1 out of 3 nodes of the Config,
Control, and Analytics roles must be available for the
Controller to be available, and at least 2 out of 3 nodes of the
Database role must be available.

A. Small Topology
In the Small topology, each node’s roles run on the same

VM and host. In order to quantify availability, we must first
condition on the combined {VM+host} availability, namely

ܣ = ுଶ(1ܣଶܣ3(ݑ ݏݐݏℎ 2|ܣ)+ுଷܣଷܣ(ݑ ݏݐݏℎ 3|ܣ) − ு(1ܣܣ3(ݑ ݐݏℎ 1|ܣ)+(ுܣܣ − ு)ଶܣܣ ோ. (2)ܣ

In the third term, (1|ܣ ℎݑ ݐݏ) = 0 since the ‘2 of 3’
quorum requirement for the Database role is violated if only
one host is up. Next, in the second term, with two hosts up
we need ‘1 of 2’ nodes to be available for three roles (Config,

Control, and Analytics) and ‘2 of 2’ nodes to be available for
the Database role. Thus (ݑ ݏݐݏℎ 2|ܣ) = ଶ/ଶܣଵ/ଶଷܣ ହ(2ܣ= −)ଷ. Finally, in the first term, with three hosts upܣ
we need ‘1 of 3’ nodes to be available for three roles and
‘2 of 3’ nodes for one role. Thus, (3|ܣ ℎݑ ݐݏ) ଶ/ଷܣଵ/ଷଷܣ= = ହ൫3ܣ − ܣ3 + ܣ ଶ൯ଷ(3 − ,). In summaryܣ2
the Small topology Controller availability AS is given by

ௌܣ = ቈ ଶ/ଶ(1ܣଵ/ଶଷܣு +3ܣܣଶ/ଷܣଵ/ଷଷܣ − ு)ܣܣ ோ (3)ܣுଶܣଶܣ

where ߙ = /. It can be shownܣ in (1) for expressionsܣ
that ܣௌ ≈ ߙ ோ, whereܣଶ/ଷܣ = ଶ/ଷ. Thisܣ ு in (1) forܣܣܣ
simplified approximation makes intuitive sense; in the Small
topology, {role+VM+host} is equivalent to a single element
(of which 2 of 3 are required) in series with the single rack.

B. Medium Topology
In the Medium topology, the four Controller roles run in

separate VMs and the hosts reside in two racks. In this case,
the term α in (1) for the expressions ܣ/ represents the
combined {role+VM} availability ߙ = ܣܣ . To quantify
availability, we first condition on rack availability, namely

ܣ = ோ(1ܣ(݊ݓ݀ ଶܴ ݑ ଵܴ|ܣ)+ோଶܣ(ݑ ଶܴ ݑ ଵܴ|ܣ) − ோ(1ܣ(ݑ ଶܴ ݊ݓ݀ ଵܴ|ܣ)+(ோܣ − ோ)ܣ . (4)

In the third term, (ܣ|ܴଵ ݀݊ݓ ܴଶ ݑ) = 0 since the
Database quorum requirement is violated if rack 1 is down.
In the second term, (ܣ|ܴଵ ݑ ܴଶ ݀݊ݓ) = ுଶܣଶ/ଶܣଵ/ଶଷܣ ுଶ(2ܣହߙ= − .ଷ(ߙ Finally, the first term requires that we
further condition on the host availability, namely (ܣ|ܴଵ ݑ ܴଶ ݑ) = ுଶ(1ܣ3(ݑ ݏݐݏℎ 2|ܣ)+ ுଷܣ(ݑ ݏݐݏℎ 3|ܣ) − ு(1ܣ3(ݑ ݐݏℎ 1|ܣ)+ (ுܣ − ு)ଶ. (5)ܣ

(ݑ ݐݏℎ 1|ܣ) = 0 since the Database node quorum is
violated if only one host is up. Next, (2|ܣ ℎݑ ݏݐݏ) ଶ/ଶܣଵ/ଶଷܣ= = ହ(2ߙ − ଷ(ߙ . The first term (3|ܣ ℎݑ ݏݐݏ) ଶ/ଷܣଵ/ଷଷܣ= = ହ(3ߙ − ߙ3 + ଶ)ଷ(3ߙ − .(ߙ2 Thus, Medium
topology Controller availability AM is given by

ெܣ = ቈ ଶ/ଶ(4ܣଵ/ଶଷܣ+ுܣଶ/ଷܣଵ/ଷଷܣ − ுܣ3 − ோ)ܣ ோ (6)ܣுଶܣ

where ߙ = ெܣ /. Again, it can be shown thatܣ in (1) forܣܣ ≈ ோܣଶ/ଷܣ ≈ ௌܣ , where ߙ = ுܣܣܣ in (1) for ܣଶ/ଷ .
This approximation also makes intuitive sense; in Medium
topology, {DB role + DB VM + host} is equivalent to a single
element (of which 2 of 3 are required) in series with the rack
hosting the quorum of elements. The other 1 of 3 {role+VM}
elements have only second-order effects on availability.

SMALL

GCAD1

GCAD2

H1
H2

GCAD3 H3
R1

MEDIUM

H1

H2

R1

A1 D1

C2 A2 D2

R2

G1 C1

G2

H3A3 D3G3 C3

LARGE

H4

R1

C1

A1 D1

G1

H3

H2H1

H8

R2

C2

A2 D2

G2

H7

H6H5

H12

R3

C3

A3 D3

G3

H11

H10H9

226

C. Large Topology
Finally, in the Large topology, each of the 12 Controller

VMs runs on its own host and each Controller node resides
in its own rack. In this case, the term α in (1) for the
expressions ܣ/ represents the combined {role+VM+host}
availability ߙ = ுܣܣܣ . In order to quantify availability,
we must again first condition on the rack availability, namely

ܣ = ோଶ(1ܣ3(ݑ ݏ݇ܿܽݎ 2|ܣ)+ோଷܣ(ݑ ݏ݇ܿܽݎ 3|ܣ) − ோ(1ܣ3(ݑ ݇ܿܽݎ 1|ܣ)+(ோܣ − ோ)ଶܣ . (7)

(ݑ ݇ܿܽݎ 1|ܣ) = 0 since the Database node quorum is
violated if only one rack is up. Next, (ݑ ݏ݇ܿܽݎ 2|ܣ) ଶ/ଶܣଵ/ଶଷܣ= = ହ(2ߙ − (ݑ ݏ݇ܿܽݎ 3|ܣ) ଷ. The first term(ߙ ଶ/ଷܣଵ/ଷଷܣ= = ହ(3ߙ − ߙ3 + ଶ)ଷ(3ߙ − .(ߙ2 Thus, the Large
topology Controller availability AL is given by ܣ = ோܣଶ/ଷܣଵ/ଷଷܣൣ + ଶ/ଶ3(1ܣଵ/ଶଷܣ − ோଶ (8)ܣோ)൧ܣ

where ߙ = /. Now, it can be shownܣ ு in (1) forܣܣܣ
that ܣ ≈ ߙ ଶ/ଷ, whereܣ = ଶ/ଷ. Thisܣ ோ in (1) forܣுܣܣܣ
approximation also makes intuitive sense; in Large topology,
{DB role + DB VM + DB host + rack} is effectively a single
element (of which 2 of 3 are required). The other 1 of 3
{role+VM+host} elements have only second-order effects.

D. Comparative HW-Centric Availability Results
Based on rules of thumb from years of Telecom industry

experience, we assume in the example to follow that
AC = 0.9995, AV = 0.99995, AH = 0.9999, and AR = 0.99999.
These values are intended to represent ballpark parameters,
and the results to follow are intended for relative, qualitative
comparisons (rather than absolute, quantitative assessments).
The resulting relative comparisons and observations remain
the same regardless of the actual values used. Large-scale
studies of enterprise failure rates do exist (c.f. [14]), but
industry-standard failure rates are difficult to establish [15].
And even if statistically reliable failure data were readily
available, availabilities will depend on recovery procedures.

Actual parameter values depend heavily on the particular
controller SW fault rates and auto-recovery capabilities, VM
and container technologies, server HW failure rates, vendor
maintenance contracts, etc. Thus, SW and HW availabilities
will always depend on the chosen technology. For example,
enterprise-grade servers may have a mean-time-between-
failure (MTBF) in the 5-year range [16]. In a hardened Telco
data center with spare HW on-site and 24x7 staffing, the
maintenance level is considered Same Day (SD), typically
corresponding to a 4-hour mean-time-to-restore (MTTR). In
a cloud data center, the maintenance contract could be Next
Day (ND), typically translating to a 24-hour MTTR after
accounting for intra-day incident timing, or Next Business
Day (NBD), typically translating to a 48-hour MTTR after
also accounting for intra-week incident timing [17]. Given
these various scenarios, AH = MTTF/(MTTF+MTTR) can
range from 0.9990 (NBD) to 0.9995 (ND) to 0.9999 (SD).

Fig. 3 shows OpenContrail Controller availability as a
function of Controller role availability AC ϵ [0.9995 ± 0.0005]
for the Small, Medium, and Large reference HW topologies,
with AV = 0.99995, AH = 0.99990, and AR = 0.99999. As can
be seen, with role availability AC = 0.9995, Controller
availability is 0.999989 for the Small and Medium topologies
and 0.999999 for the Large topology. As the role availability
AC ranges between 0.999 and 1.0, the Small and Medium
availabilities range between 0.999986 and 0.999990 while
Large availability ranges between 0.999996 and 0.9999999.

We can draw several important conclusions from this
HW-centric analysis. First, although separation of roles onto
separate VMs (S→M) offers the ability to independently
scale roles for capacity planning, it does not improve
availability. With role separation, there are 4x as many VMs
to fail, but the impact of each VM failure is roughly ¼. The
same is true for host separation (M→L). Although this effect
is masked by the impact of the additional rack separation
(discussed later), separation of VMs onto separate hosts does
not improve availability. With VM separation, there are 4x as
many hosts to fail but the impact of each failure is roughly ¼.

Second, rack separation does not improve availability
unless three racks are employed. In fact, contrary to
expectation, adding a second rack (S→M) actually slightly
reduces availability, since the ‘2 out of 3’ quorum still exists
on a single rack. In both the Small and Medium topologies,
failure of rack R1 causes complete Controller failure because
two of the three nodes reside on that one rack. But in the
Medium topology, we have added a second rack R2 and its
associated failure modes. So there are 2x as many racks to
fail, but the impact of a rack failure is > ½ because of the
overweight significance of rack R1 failures.

In contrast, adding the third rack (M→L) does improve
availability. With AC = 0.9995, Controller availability
increases from 0.999989 to 0.999999 (a savings of
5 minutes/year in downtime), since the ‘2 of 3’ quorum is not
broken by a single rack failure. From an availability
standpoint, the conclusion is clear: one rack or three, but not
two. Furthermore, the space and expense of multiple racks
must be weighed against the relatively modest improvement
in availability between the Small and Large deployments.

In conclusion, this high-level approach offers a simple yet
powerful methodology to quantify Controller availability as
a function of key parameters. Perhaps more importantly, this
HW-centric approach provides a means to quickly and easily

Figure 3. OpenContrail cluster availability (HW-centric).

0.999999

0.999989

0.999985

0.999990

0.999995

1.000000

0.9990 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1.0000

Controller Role Availability

OpenContrail Cluster Control Plane Availability

LARGE
SMALL
MEDIUM

Availabilities
VM = 0.99995

Host = 0.99990
Rack = 0.99999

227

perform relative sensitivity analyses on various possible HW
deployment topologies, thus facilitating evaluation of the
cost:resiliency tradeoff before capital investment occurs.

VI. SW-CENTRIC AVAILABILITY ANALYSIS
As useful as we have shown it to be, the previous HW-

centric approach still only treats the Controller roles as equal,
atomic SW elements. In reality, the four role types each
consist of distinct SW processes with distinct failure modes
(outlined in section III). Thus, the assumptions in section V
regarding equal role availability AC for all roles and role-level
quorum requirements can be further fine-tuned with a more
SW-centric focus. Furthermore, this more detailed approach
allows us to separately quantify availability of the SDN
control plane (CP) and per-host vRouter data plane (DP).
Based on the results in section V (in particular, the
observations regarding the lack of resiliency impact of VM
and host separation, and rack separation onto less than three
racks), the SW-centric analysis will focus only on the two
extreme cases of the Small (S) and Large (L) HW topologies.

A. Supervision and Restart
From a reliability modeling standpoint, the supervisor

processes require special consideration. As discussed in
section III, each critical Controller role (Config, Control,
Analytics, and Database) has its own supervisor process.
Thus, there are 3 nodes x 4 roles = 12 supervisor processes in
a 3-node configuration, plus the per-host supervisors for the
vRouter DP role. The supervisor is responsible for auto-
restarting failed processes within their respective node-role.

If a particular supervisor process dies, the other
supervisors in any other nodes or roles do not assume
responsibility for that node-role. For example, if the
supervisor in Config node 2 dies (call this process supervisor-
config-2), then every other process in the config-2 node is
running in an unsupervised mode. Neither the supervisors for
other Config nodes, nor the supervisors for other node 2
roles, can assume supervision of Config node 2. All config-2
processes remain unsupervised until supervisor restart.

Furthermore, as described in section 3.1, if a particular
supervisor dies, any failed processes within that supervisor’s
node-role must be manually restarted until the supervisor
itself is manually restarted, and manual restart of a supervisor
requires that every process in its node-role be killed prior to
supervisor restart so that the supervisor can then auto-restart
those processes under its oversight and control.

These behaviors lead to the need to analyze two cases:
 The optimistic upper bound case where the supervisor

is not required for continued node-role operation. In
this option, we assume that the node-role will be
brought down and the supervisor restarted during the
next maintenance window in a hitless manner.

 The realistic lower bound case where the supervisor
is required for continued operation. In this option, we
assume that all node-role processes are killed and the
supervisor restarted immediately following its failure.

These options impact the process availability parameters
used in the analysis to follow. Let A denote availability of an
individual process under supervisor control (auto-restarted),

and let AS denote availability of an individual process that is
unsupervised and requires manual restart (as an example, the
supervisor process itself). Let F denote the process MTBF,
let R denote the mean time to auto-restart a supervisor-
controlled process, and let RS denote the mean time to
manually restart an unsupervised process such as the
supervisor. Then A = F/(F+R) and AS = F/(F+RS).

Assume for simplicity that F, R, and RS are the same for
all associated processes in all roles (thus A and AS are the
same for all supervised and unsupervised processes). As we
will show, it is straightforward to relax this assumption in the
following methodology, if appropriate. We have created two
types of processes already, and we can easily expand to K
process types if lab/field data for F suggest the need to do so.

We assume in the example results to follow that
A = 0.99998 (based on F = 5000 hours and R = 0.1 hour) and
AS = 0.99980 (based on RS = 1 hour), along with the previous
values for AV, AH, and AR. These variables are parameters in
the model and can easily be changed. Again, the results to
follow are intended for relative, qualitative comparisons
(rather than absolute assessments). In order to reflect
differing degrees of SW process maturity and auto-recovery
capabilities with different SDN controller implementations,
sensitivity analysis is performed as a function of process
availability ܣ ∈ [0.99998 ± 1 order of magnitude].

If the supervisor is not required, then the actual process
restart time depends on when the process fails during the (say
10 hour) interval after the supervisor fails but before the next
opportunity to schedule a maintenance window. Assuming F
~ exponential, then Pr{failure during 10h supervisor outage}
= 1–e–10/F = 0.002 and the actual process restart time R* =
(e–10/F)R+(1–e–10/F)RS = 0.102 hours. Thus, the actual process
availability A* = F/(F+R*) ≈ 0.99998. That is, process
availability A is not measurably impacted in this scenario 1.

In contrast, if the supervisor is required, then either the
failure of a process or that of its supervisor causes the process
to restart. In this case, the actual process failure interval F* =
F/2 = 2500 hours (assuming equal failures rates) and the
actual restart time R* = (RS+R)/2 = 0.55 hours. Thus, the
actual process availability A* = F*/(F*+R*) ≈ 0.9998. That
is, every process effectively inherits the supervisor
availability AS in this scenario 2.

As mentioned, some processes are not under supervisor
control and thus require manual restart (e.g., redis). Table II
lists the counts of processes within each role requiring auto
and manual restart. When the supervisor is not required,
processes in the four Auto columns have availability A and
those in the four Manual columns have availability AS. When
the supervisor is required, all processes effectively have
availability AS regardless of their default restart mode. If
additional process types are needed to account for different F
(e.g., new vs. mature code), these counts in Table II can be
further broken down (e.g., New-Auto, Mature-Auto, etc.).

B. Quorum Requirements
As discussed in section III, each Controller process has

different quorum requirements for CP and DP availability. A
few processes (notably within the Database role) require
‘2 of 3’ instances to be available, most require only ‘1 of 3’

228

instances to be available, and some are not strictly required at
all for CP or DP functionality. Let MR denote the number of
role R processes requiring ‘2 of 3’ instances available, and let
NR denote the number of role R processes requiring ‘1 of 3’
instances available, where R = G (Config), C (Control),
A (Analytics), or D (Database). Table III shows the values for
MR and NR based on the failure mode analysis in section III.
The analyses to follow are expressed in terms of variables MR
and NR for generality and extensibility to other controllers.

Tables II and III fully encapsulate OpenContrail 3.x.
Other Controller implementations can be accommodated
simply by modifying the rows, columns, and values in these
tables. For example, we model two process types (from an
availability standpoint): Auto and Manual. If a different SDN
controller has more than two distinct recovery modes, or
processes with distinct maturity levels, then additional rows
can be added to Table II. We model four nodes types. If a
different controller has functionality partitioned differently,
then columns (rows) can be added to or removed from Table
II (III). If a different controller has a different process count
required for CP and DP operability, then values in each cell
of Tables II and III can be changed. Although the analysis in
the next sections may rightfully seem tedious, inclusion of
this analysis is essential to demonstrate how these differences
among different SDN controllers easily translate into simple
changes in the mathematical formulation.

C. Small Topology, Supervisor Not Required (1S)
We first consider the (optimistic upper bound) case where

the supervisor processes are not required in the Small
topology (option 1S). As in section V, in order to quantify
availability, we must first condition on the {VM+host}
availability. In this case, the Small topology SDN CP
availability ACP for the 1S option is given by

ܣ = ቈ ுଷܣଷܣ(ݑ ݏݐݏℎ 3|ܣ) ுଶ(1ܣଶܣ3(ݑ ݏݐݏℎ 2|ܣ)+ − ு)ܣܣ ோ, (9)ܣ

where (ݔ|ܣ ℎݑ ݏݐݏ) = ൫ܣଶ/௫൯∑ ൫ܣଵ/௫൯∑ , (10)

TABLE II. COUNTS OF PROCESSES BY RESTART MODE BY ROLE

Restart Mode Config Control Analytics Database
Auto 6 3 4 0

Manual 0 0 1 4

TABLE III. COUNTS OF PROCESSES BY QUORUM TYPE BY ROLE

Role SDN CP Host DP
Quorum Type M N M N

Config G 0 6 0 1
Control C 0 1 0 1*

Analytics A 0 5 0 0
Database D 4 0 0 0

Sums 4 12 0 2
* {control+dns+named} is a ‘1 of 3’ process block required for DP

availability, modeled as single process with availability A3.

and ߙ = ܣ in (1) for the expressions ܣ/ and ∑ ோܯ and ∑ ோܰ denote the sums for all roles R = G, C, A, D for the SDN
CP in Table III. Thus, the Small topology SDN CP
availability ACP for the 1S option is given by ܣ = ቂ൫ܣଶ/ଷ൯∑ ൫ܣଵ/ଷ൯∑ ܣଷܣுଷ+൫ܣଶ/ଶ൯∑ ൫ܣଵ/ଶ൯∑ 3(1 − ுଶቃܣଶܣ(ுܣܣ ோ. (11)ܣ

Intuitively, this expression makes sense. CP availability
is the sum of the conditional probabilities of functional
availability in two cases, when 3 of 3 {VM+host} blocks are
up and when 2 of 3 blocks are up, each weighted by their
corresponding probabilities. Functional availability is given
by the product of individual role availabilities, consisting of ∑ ோܯ quorum processes and ∑ ோܰ non-quorum processes.
This sum is multiplied by the availability of the shared rack.

The host DP availability consists of two components, the
shared contribution from Controller-based roles (impacting
the DP for every host) and the local contribution from the
host-based vRouter role (impacting the DP only for that host).
The expression for shared DP availability ASDP is identical to
(11) except that exponents ∑ ∑ ோ andܯ ோܰ are instead based
on the Host DP columns in Table III. Next, the expression for
the local DP contribution to availability ܣ = , whereܣ
(again) A denotes individual process availability, and
K denotes the number of host-based vRouter processes that
must be available. (K = 2 in OpenContrail, vrouter-agent and
vrouter-dpdk.) Combining, the Small topology per-host DP
availability ܣ is given by ܣ = ܣ ௌܣ = .ܣ(ௌܣ)
D. Small Topology, Supervisor Required (2S)

We next consider the (realistic lower bound) case where
the supervisor processes are required in the Small topology
(option 2S). Again conditioning on {VM+host} availability,
the Small topology SDN CP availability ACP for the 2S option
is given by (9). In order to quantify availability in the case
when the supervisor processes are required, we must further
condition on the supervisor process availability, namely (ݔ|ܣ ℎݑ ݏݐݏ) = (ܣ|݃, ܿ, ܽ, ݀)ܲ(݃, ܿ, ܽ, ௫.(ݔ|݀

ௗୀଵ
௫

ୀଵ
௫

ୀଵ
௫

ୀଵ (12)

,݃|ܣ) ܿ, ܽ, ݀) denotes the Controller availability with
g Config, c Control, a Analytics, and d Database supervisor
process instances available, given by (ܣ|݃, ܿ, ܽ, ݀) = ൫ܣଶ/൯ృ൫ܣଵ/൯ృ൫ܣଶ/൯ి൫ܣଵ/൯ి × ൫ܣଶ/൯ఽ൫ܣଵ/൯ఽ൫ܣଶ/ௗ൯ీ൫ܣଵ/ௗ൯ీ, (13)

where ߙ = /, and MR and NR denote the roleܣ in (1) for ܣ
R values for the SDN CP in Table III.

229

Next, ܲ(݃, ܿ, ܽ, (ݔ|݀ denotes the probability (given x
hosts up) of g Config, c Control, a Analytics, and d Database
supervisor process instances available, given by ܲ(݃, ܿ, ܽ, (ݔ|݀ = ቀ݃ݔቁ ቀܿݔቁ ቀܽݔቁ ቀ݀ݔቁ [ߩାାାௗ(1 − ସ௫ିିିିௗ], (14)(ߩ

where ߩ = .ௌ is the supervisor process instance availabilityܣ
Combining, the SDN CP availability ACP for the 2S option

is given by (9,12-14) where ߙ = ,/ in (13)ܣ in (1) for ܣ
MR and NR in (13) denote the role R values for the SDN CP
in Table III, and ߩ = ௌ in (14). Again, the expression for theܣ
shared DP availability ASDP is identical to (9,12-14) except
that exponents MR and NR in (13) are instead based on the
Host DP rows in Table III.

Again, this expression for CP availability (while dense)
makes intuitive sense. CP availability is still the sum of the
weighted conditional functional availabilities in two cases,
3 of 3 {VM+host} blocks up and 2 of 3 blocks up, but when
supervisor processes are required, conditional availabilities
are more complicated. Now, functional availability must be
further conditioned on supervisor process availability. There
are 4x3 possible cases with three {VM+host} blocks up, and
4x2 cases with two blocks up, given in (12). For instance, (3,1,2,3|ܣ) denotes the conditional availability with
3 Config, 1 Control, 2 Analytics and 3 Database supervisor
instances up. The corresponding probability weights are more
complicated as well. There are multiple combinations with
the appropriate numbers of supervisor instances up or down,
as given in (14). For instance, ܲ(3,1,2,3|3) denotes the
conditional probability of 3 Config, 1 Control, 2 Analytics,
and 3 Database supervisor process instances up and the rest
down, given 3 {VM+host} blocks up.

Finally, the expression for the local DP contribution to
per-host DP availability when the host vRouter supervisor
process is required ܣ = ,ௌܣܣ where (again) A is the
individual process availability, K denotes the number of host-
based vRouter processes that must be available, and AS is the
individual supervisor process availability. Combining, the
per-host DP availability ܣ is given by ܣ = .ௌܣܣ ௌܣ
E. Large Topology, Supervisor Not Required (1L)

We next consider the (optimistic upper bound) case where
supervisor processes are not required in the Large topology
(option 1L). Again, in order to quantify availability, we must
first condition on the rack availability. In this case, the Large
topology SDN CP availability ACP for 1L option is given by ܣ = ோଶ(1ܣ3(ݑ ݏ݇ܿܽݎ 2|ܣ)+ ோଷܣ(ݑ ݏ݇ܿܽݎ 3|ܣ) − is given by (12-14) where x now denotes (ݑ ݏ݇ܿܽݎ ݔ|ܣ) ோ). (15)ܣ
the number of available racks rather than hosts; g, c, a, and d
denote the number of available Config, Control, Analytics,
and Database {VM+host} blocks rather than supervisor
process instances; and ߩ = ு. Combining, the SDN CPܣܣ
availability ACP for 1L option is given by (15,12-14) where

ߙ = / in (13), MR and NR in (13) denote roleܣ in (1) for ܣ
R values for the SDN CP in Table III, and ߩ = .ு in (14)ܣܣ
Intuition for this expression mimics that of option 1S.

Again, the shared DP availability ASDP is identical to
(15,12-14) except that exponents MR and NR in (13) are
instead based on the Host DP rows in Table III. Next, the
local DP availability ܣ = .ܣ Combining, the per-host
DP availability ܣ is given by ܣ = .ܣ ௌܣ
F. Large Topology, Supervisor Required (2L)

Finally, we consider the (realistic lower bound) case
where the supervisor processes are required in the Large
topology (option 2L). As before, we must first condition on
the rack availability. We then further condition on the
{supervisor+VM+host} availability. The analysis is identical
to that of option 1L except that ߩ = ு in (14) ratherܣܣௌܣ
than ܣܣு. That is, the Large topology SDN CP availability
ACP for 2L option is given by (15,12-14) where ߙ = in (1) ܣ
for ܣ/ in (13), MR and NR in (13) denote the role R values
for the SDN CP in Table III, and ߩ = ுܣܣௌܣ in (14).
Intuition for this expression mimics that of option 2S.

Again, the shared DP availability ASDP is identical to
(15,12-14) except that exponents MR and NR in (13) are
instead based on the Host DP rows in Table III, and local DP
availability ܣ = .ௌܣܣ Combining, the per-host DP
availability ܣ is given by ܣ = .ௌܣܣ ௌܣ
G. Comparative SW-Centric Availability Results

We assume in the example to follow that the (default)
individual process availability A = 0.99998 and the (default)
supervisor process availability AS = 0.99980, along with the
previous values for AV, AH, and AR. The figures show
OpenContrail availability as a function of process availability ܣ ∈ [0.99998 ± 1 order of magnitude of downtime (DT)].
That is, the center of the x-axis range (value of 0) corresponds
to defaults A = 0.99998 and AS = 0.9998. The left-most side
of the x-axis (with value of –1) corresponds to A = 0.9998
and AS = 0.998 (1 order of magnitude less reliable, i.e., 10x
more DT), and the right-most side of the x-axis (value of 1)
corresponds to A = 0.999998 and AS = 0.99998 (1 order of
magnitude less DT). A and AS are varied in lock-step.

First, Fig. 4 shows SDN CP availability ACP as a function
of A for the Small and Large HW deployment topologies with
and without supervisor processes required. As can be seen,
with default individual process availability A = 0.99998,
ACP exceeds 0.999987 for the Small topology and 0.999997
for the Large topology. Requiring the supervisor increases
downtime from 5.9 to 6.6 minutes/year (m/y) in the Small
topology and from 0.7 to 1.4 m/y in the Large topology.

The addition of two racks to create the Large topology
saves 5 m/y of CP DT. While this savings sounds modest
relative to the cost of two additional racks, it is important to
realize that this value is an average. In reality, the single-rack
Small topology may experience no rack-related downtime for
many years followed by a highly-publicized extended outage.
AR = 0.99999 could consist of a rack failure every 500 years,
lasting two days to deliver new HW and rerack servers. But
for a network or content or video service provider with 500

230

Figure 4. OpenContrail SDN CP Availability ACP (SW-Centric).

edge sites, a yearly outage may be unacceptable. The analysis
shows that these outages can be avoided with rack separation.

If process availability A decreases by 1 order of
magnitude to 0.9998 (and AS to 0.998), CP availability ACP
decreases rapidly, the impact of rack separation becomes less
relevant (Small and Large topologies begin to converge), and
impact of the supervisor process becomes more pronounced.
When supervisor is required, the dominant failure mode is:
one Database supervisor failure and any Database process
failure in another node, taking down two Database instances,
resulting in quorum loss. When supervisor is not required, the
dominant failure mode is: two failures of the same Database
process in different nodes. The dominant SW failure mode in
any implementation derives from the weakest link, typically
the combination of quorum needs and process availability. In
the case of OpenContrail, these factors converge for Database
processes (all required for a quorum and all requiring manual
restart), and the Database supervisor process in particular.

At the other extreme, when process availability A
increases by 1 order of magnitude to 0.999998 and AS to
0.99998, ACP levels off quickly, the impact of the supervisor
process becomes irrelevant, and the impact of rack separation
in the Large topology becomes the key differentiator. The CP
availabilities with and without the supervisor required
converge to 0.99999 (Small topology) and to 0.9999998
(Large topology). The difference is due to rack separation.

Next, Fig. 5 shows host DP availability ADP as a function
of A for the Small and Large topologies with and without
supervisor processes required. As can be seen, with process
availability A = 0.99998, DP availability ADP = 0.99975+ for
both Small and Large topologies when vRouter supervisor is
required, and 0.99995+ when the vRouter supervisor is not
required. The difference is due entirely to the vRouter
supervisor. Requiring the supervisor increases downtime by
5x from 26 to 131 m/y in the Small topology and by 6x from
21 to 126 m/y in the Large topology. Again, the third rack in
the Large topology saves 5 m/y of SDP downtime. Other than
this 5 m/y, there is little difference between the Small and
Large topologies (as expected), since total DP availability is
dominated by the identical host vRouter LDP availability.

If individual process availability A decreases 1 order of
magnitude to 0.9998 (and AS to 0.998), DP availability ADP
decreases rapidly, and supervisor process impact becomes
more pronounced. Small and Large availabilities converge to

Figure 5. OpenContrail DP Availability ADP (SW-Centric).

0.9976 (supervisor required) or to 0.9996 (supervisor not
required). When the supervisor process is required, the
dominant failure mode is failure of any supervisor. When the
supervisor process is not required, the dominant failure mode
is failure of either vRouter process. At the other extreme,
when process availability A increases by 1 order of magnitude
to 0.999998 (and AS to 0.99998), DP availability ADP levels
off quickly. Small and Large DP availabilities converge to
0.999976 (supervisor required) or to 0.999996 (supervisor
not required). Again, the difference is due to rack separation
in the SDP contribution to total DP availability.

VII. CONCLUSIONS
Given the critical role that distributed Software Defined

Networking controllers such as OpenContrail play in cloud
computing and networking architectures, understanding their
resiliency profile is crucial. In this work, we decompose the
SDN controller node into its various roles, and drill down to
the process level. We analyze the Controller process failure
modes and their effects on the intra-element SDN control
plane and the subtending host vRouter data planes within a
cloud environment (data center). We develop HW- and SW-
centric parametric availability models for a variety of HW
topologies and SW modes of operation to predict availability
and quantify sensitivity to platform and process resiliency.

Overall, the results suggest that the Controller SW can
achieve very high levels of availability. In contrast, analysis
of vRouter SW resiliency uncovered process single points of
failure, and suggests that the host vRouter DP may achieve
much lower availability and may limit host-level resiliency.
Identifying these process weak links allows service provider
operations to develop automation to reduce downtime and
improve vRouter availability, and provides the Open Source
community with focus areas for code improvements.

The high-level, HW-centric approach offers a simple yet
powerful methodology to quantify Controller availability as
a function of key parameters. More importantly, this
approach provides a means to quickly perform relative
sensitivity analyses on various HW deployment topologies,
thus facilitating evaluation of the cost:resiliency tradeoff
before capital investment occurs. For a HW deployment on
one or two racks and a ‘2 of 3’ quorum SW implementation,
we show that the Controller availability is approximately
given by ܣ ≈ ଶ(3ߙ − ߙ ோ, whereܣ(ߙ2 = ,ு, and ACܣܣܣ

0.99990

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1.00000

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OpenContrail Cluster NB API MP Availability

Large MP (supv not rqd)
Large MP (supv required)
Small MP (supv not rqd)
Small MP (supv required)

Increase assumed process
availability 1 order of magnitude

Decrease assumed process
availability 1 order of magnitude

“supv not rqd” means node processes persist
following supervisor failure until next hitless
maintenance window (optimistic upper bound)

“supv required” means node processes failed
following supervisor failure until supervisor
manually restarted (realistic lower bound)

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OpenContrail Cluster Host DP Availability

Large DP (supv not rqd)
Small DP (supv not rqd)
Large DP (supv required)
Small DP (supv required)

Increase assumed process
availability 1 order of magnitude

Decrease assumed process
availability 1 order of magnitude

“supv not rqd” means node processes persist
following supervisor failure until next hitless
maintenance window (optimistic upper bound)

“supv required” means node processes failed
following supervisor failure until supervisor
manually restarted (realistic lower bound)

231

AV , AH, and AR respectively denote the Controller node, VM,
host, and rack availabilities. For a HW deployment on three
racks, we show that Controller availability is approximately
given by ܣ ≈ ଶ(3ߙ − ߙ where instead ,(ߙ2 = .ோܣுܣܣܣ

A number of important observations can be deduced
regarding the underlying HW deployment topology. First, the
separation of roles onto separate VMs does not improve
availability. With role separation, there are 4x as many VMs
to fail, but the impact of each VM failure is roughly ¼. The
same is true for separation of the VMs onto separate hosts.

Second, rack separation does not improve availability
unless three racks are employed. Contrary to expectation,
expanding from one to two racks actually reduces
availability. In both the one- and two-rack deployments,
failure of a particular rack causes complete Controller failure
because the ‘2 of 3’ quorum still resides on one rack. But
adding a second rack adds its associated failure modes. So
there are 2x as many racks to fail, but the impact of a rack
failure is > ½ because of the overweight significance of
failures of the quorum rack. In contrast, adding a third rack
does improve availability, since the quorum is not broken by
the failure of any single rack. From an availability standpoint
in a ‘2 of 3’ quorum deployment, the conclusion is clear:
one rack or three racks, but not two.

The space and expense of a second and third rack must be
weighed against the availability improvement. The addition
of two more racks saves a few minutes/year of downtime.
While this sounds modest relative to the cost associated with
two additional racks, it is important to realize that this is an
average. In reality, the single-rack topology in each site will
experience no rack downtime for many years followed by a
highly-publicized extended outage. For a network or content
service provider with many cloud sites, the resulting frequent
high-profile outages may be unacceptable.

The detailed SW-centric approach developed in this paper
yields additional insights that can only be gained from a
process-level analysis. For instance, as individual process
availability decreases, SDN CP availability decreases
rapidly, the impact of rack separation becomes less relevant,
and the impact of the supervisor process becomes more
pronounced. At the other extreme, as individual process
availability increases, CP availability quickly levels off, the
impact of the supervisor process becomes irrelevant, and the
impact of rack separation becomes the key differentiator.
Next, as individual process availability decreases, host DP
availability decreases rapidly, and the impact of the
supervisor process becomes more pronounced. At the other
extreme, as process availability increases, DP availability
quickly levels off, and the impact of the supervisor process
becomes less relevant. In all cases, the impact of rack
separation remains constant. Again, the third rack saves a few
minutes/year of downtime on average.

Although OpenContrail is used as an example, we
develop a flexible, extensible analytic modeling framework
that can be used to assess the relative availability of any
distributed SDN controller. We encapsulate the Controller
SW implementation into two tables and develop the
mathematical framework around these inputs so that other

implementations can be analyzed simply by populating the
tables appropriately. The parametric model framework is thus
highly flexible and easily adaptable to other distributed SDN
controller implementations through straightforward changes
to a well-defined set of parameters. Furthermore, we evaluate
HW topologies spanning the extremes from the smallest
reasonable scenario to the largest scenario necessary for
complete quorum process separation.

To the best of our knowledge, this work represents the
first effort of its kind to address the process-level dynamics
and quantitatively assess intra-element SDN controller SW
failure modes and availability at the Controller process level.
Future work includes simulating the topologies to validate the
conclusions, and leveraging the results to pinpoint areas for
machine learning automation to reduce downtime and
identify opportunities for Controller SW improvements.

ACKNOWLEDGMENT
We wish to thank our management for their continual

support of this and other Open Source contributions.

REFERENCES
[1] A. Singla and B. Rijsman, Day One: Understanding OpenContrail

Architecture. Juniper Networks, Inc., 2013.
[2] https://docs.opendaylight.org/en/stable-fluorine/
[3] https://wiki.onosproject.org/display/ONOS/
[4] http://www.projectfloodlight.org/floodlight/
[5] https://www.vmware.com/products/nsx/solution-brief.pdf
[6] http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
[7] F. Longo, S. Distefano, D. Bruneo, and M. Scarpa, “Dependability

modeling of software defined networking,” Computer Networks, vol.
83, pp. 280-296, 2015.

[8] T. Nguyen, T. Eom, S. An, J. Park, J. Hong, and D. Kim, “Availability
modeling and analysis for software defined networks,” 21st IEEE
Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 159-168, 2015.

[9] G. Nencioni, B. Helvik, A. Gonzalez, P. Heegaard, and A. Kamisinski,
“Availability modelling of software-defined backbone networks,” 46th
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 105-112, 2016.

[10] K. Han, T. Nguyen, D. Min, and E. Choi, “An evaluation of
availability, reliability and power consumption for a SDN
infrastructure using stochastic reward net,” Advances in Computer
Science and Ubiquitous Computing, J. Park, Y.Pan, G. Yi, and V. Loia
(editors). Singapore: Springer, 2016.

[11] P. Heegaard, B. Helvik, G. Nencioni, and J. Wafler, “Managed
dependability in interacting systems,” Principles of Performance and
Reliability Modeling and Evaluation, L. Fiondella and A. Puliafito
(editors). Switzerland: Springer, 2016.

[12] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. Mas
Machhura, “Characterization of failure dynamics in SDN controllers,”
9th International Workshop on Resilient Networks Design and
Modeling (RNDM), pp. 1-7, 2017.

[13] G. Nencioni, B. Helvik, and P. Heegaard, “Including failure correlation
in availability modeling of a software-defined backbone network,”
IEEE Trans. on Network and Service Management, vol. 14 no. 4, 2017.

[14] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” International Conference on
Dependable Systems and Networks (DSN2006), June, 2006.

[15] S.Miller, “Explaining the lack of large scale studies in IT,” SMB IT
Journal, March, 2015.

[16] Vendor-proprietary private communications under NDA, 2016.
[17] Y. Kogan, AT&T Labs internal memorandum, unpublished.

232

