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Abstract— Given the critical role Software Defined Networking 
controllers play in cloud computing and networking 
architectures, understanding their resiliency profile is crucial. 
Using OpenContrail as a reference architecture, we analyze the 
typical distributed controller failure modes and their effects on 
the control and data planes. We then develop hardware- and 
software-centric theoretical availability models for a variety of 
physical topologies and software modes of operation. These 
parametric models are used to predict availability and quantify 
sensitivity to underlying platform and process resiliency. The 
results suggest that the distributed control plane can achieve 
very high availability, while the host data plane may achieve 
much lower availability due to inherent single points of failure. 

Keywords- SDN, NFV, FMEA, Availability, Modeling 

I.  INTRODUCTION 
OpenContrail [1] is one of many Open Source and vendor 

extensible overlay platforms for Software Defined 
Networking (SDN) within and between cloud environments, 
including ODL [2], ONOS [3], Floodlight [4], NSX [5], etc. 
OpenContrail consists of two main components: the 
Controller and the vRouter. The Controller is a logically 
centralized but physically distributed SDN controller 
responsible for providing the configuration, control, and 
analytics functions of the subtending virtualized network. The 
vRouter (similar to the Open vSwitch [6]) is the forwarding 
plane of a distributed router that runs in the hypervisor of a 
virtualized server, and extends the network from the physical 
routers and switches in a data center into a virtual overlay 
network hosted in the virtualized servers. The OpenContrail 
Controller provides the logically centralized management or 
control plane, and orchestrates the host vRouter data planes. 

From a high availability standpoint, one of the compelling 
benefits of distributed SDN controllers such as OpenContrail 
is that the logically centralized Controller can be highly 
physically distributed. As described in section II, the 
Controller consists of multiple node types, each of which has 
multiple instances for increased availability and horizontal 
scaling. Those node instances can be physical servers or 
virtual machines (VMs). Multiple node types can be combined 
on a single server or spread across multiple physical servers. 

Given the critical role that SDN controllers play in cloud 
computing and networking, understanding their resiliency 
profile is crucial. In this work, we analyze OpenContrail 3.x 
process failures modes and their effects on the Controller 
control plane and the subtending host vRouter data planes 

within a cloud environment (data center). We then develop 
hardware- and software-centric theoretical availability models 
for a wide variety of physical hardware (HW) deployment 
topologies and software (SW) modes of operation. These 
parametric models are used to predict availability and quantify 
sensitivity to underlying HW and process resiliency. 

Although OpenContrail is used as an example, our goal is 
to develop a flexible, extensible analytic modeling framework 
that can be used to assess the relative availability of any 
distributed SDN controller in a variety of HW configurations. 
From a Controller SW standpoint, we fully encapsulate the 
implementation (OpenContrail 3.x in this case) into two tables 
(II and III) and develop the model framework around these 
inputs so that other implementations can be analyzed simply 
by populating these two tables appropriately. The parametric 
model framework is thus highly flexible and easily adaptable 
to other distributed SDN controller node architectures. From 
a HW deployment standpoint, we consider topologies 
spanning the extremes from the smallest reasonable scenario 
(minimum number of VMs required to support the quorum, 
each on a single host, all in a single rack) to the largest 
necessary scenario (every role copy in its own VM, each on 
its own host, distributed over a quorum number of racks).  

Much prior work has been done to quantify the impact of 
HW failures and SW faults on forwarding plane availability in 
SDN-controlled networks [7-13]. These works model each 
SDN controller data center as a single entity, and focus on 
availability optimization at the network of controllers level. 
As an example, [9] develops an overall availability model of 
the high-level network of links, switches, routers, and 
controllers comprising an SDN-controlled backbone network. 
The SDN controller node itself is modeled as a ‘K of M’ 
cluster of identical HW/SW elements. In these works, 
‘distributed’ means that SDN control is spread across multiple 
controller nodes in a backbone network of data centers. 

In contrast, the focus of this work is to decompose the 
SDN controller node itself into the various roles (network 
routing configuration, forwarding plane control, data 
collection and analytics, etc.). We then drill down to the 
controller process level, capturing such issues as availability 
critical path process counts, inter-process dependencies, and 
quorum requirements. Here ‘distributed’ means that the intra-
data center SDN controller SW roles are physically spread 
across a variety of HW layout and SW container topologies. 
To our knowledge, this analysis is the first effort of its kind. 

In section II we summarize the OpenContrail 3.x SW 
architecture, and in section III we describe its process failure 
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modes and resiliency impacts. Next, in section IV we propose 
various reference HW deployment topologies as a concrete 
framework for the subsequent analytic modeling. Then, in 
section V we develop HW-centric parametric availability 
models to analyze the impact of physical deployment 
topology, and in section VI we develop SW-centric parametric 
availability models to analyze the impact of process modes of 
operation. Finally, section VII provides concluding remarks. 

II. OPENCONTRAIL ARCHITECTURE 
OpenContrail is segmented into several functions from an 

architectural perspective, called node types or roles. This 
segmentation is intended to leverage the resiliency capabilities 
of a scalable architecture of loosely coupled services. 

The Config node provides a means for clients to consume 
services by transforming a high-level networking request into 
a lower level object. This object is then passed to the Control 
node, and ultimately to the vRouter to enforce network 
policies. A northbound API server exposes configurable 
objects to install configuration state and perform create-read-
update-delete operations. The API process is responsible for 
storing/loading permanent data to/from the database (DB). A 
Cassandra cluster is used to persistently store config data, and 
a Zookeeper ensemble is used to guarantee uniqueness of 
system-generated IDs. A schema transformer is implemented 
to translate the high-level data into the low-level object. An 
Interface for Metadata Access Points (IF-MAP) server 
provides a mechanism to write the transformed low-level data, 
and a southbound interface to push this data to the Control 
nodes. RabbitMQ is used as a messaging bus for 
communication between the processes. The discovery server 
is used to locate other nodes providing a particular service. 

The Control node (IF-MAP client) retrieves information 
from the Config node and passes the data to vRouter agents, 
gateways, and other Control nodes. All Control nodes are 
active, and synchronize their routing information using 
Border Gateway Protocol (BGP). The vRouter agents running 
on the Compute hosts connect to two Control nodes 
simultaneously, and download their configuration and routing 
information using this established communication channel. 

The Analytics node collects and exposes operational data 
for the cluster, including logs, stats, queries, alarms, and event 
streams. A Cassandra cluster is used to store Analytics data. 
Data generators (processes, and physical or virtual devices) 
send their data to the collector, which then uses a Redis cache 
to store real-time data or a Cassandra DB to store persistent 
data. A Kafka bus is also used to stream events and alarms. 

The Database node uses Cassandra for both the Config 
and Analytics roles. Separate Cassandra DBs are used for the 
Config and Analytics data. In addition, the Config role uses 
Zookeeper, and the Analytics role uses Kafka. Each of these 
four components is clustered in a 2N+1 fashion, where N is 
the number of failures supported. We assume that N=1; that 
is, we consider the minimum 3 node deployment where ‘2 of 
3’ nodes are required for each of these four component 
quorums. Generalization to N>1 is straightforward. 

The vRouter is the forwarding element that acts as a data 
plane (DP) for the workloads running on the Compute servers 
across the cluster, replacing any native solution for workload 

networking. The vRouter is composed of two parts, the 
vRouter agent running in user space and the vRouter module 
running in kernel space (optionally replaced by the vRouter 
DPDK module running in user space). The vRouter agent 
performs all policy evaluation (such as security, NAT, 
mirroring, multicast, or load-balancing) by examining the 
flows going through the vRouter. The routing information is 
automatically imported and exported based on network 
policies defined on the Controller, and the vRouter performs 
all necessary bridging or routing. OpenContrail uses overlay 
networking to carry workload traffic between Compute nodes, 
in order to provide flexibility to the virtual network topology 
created on top of the fabric/underlay network. The vRouter is 
in charge of encapsulating traffic egressing the server. 

Fig. 1 shows the totality of relevant OpenContrail 3.x 
processes within each node (role). In addition to the unique 
processes within each role described previously, each of the 
roles has a supervisor process and a nodemgr process. These 
common processes are described in more detail in section III. 

III. SOFTWARE FAILURE MODE ANALYSIS 
In the process failure mode description to follow, we 

assume that N=1 in the 2N+1 deployment configuration 
described above. That is, we consider a minimum 3-node 
deployment where ‘2 of 3’ nodes are required for Controller 
quorum. However, at the process level not all processes must 
meet this ‘2 of 3’ requirement. As described below, some 
processes do require ‘2 of 3’ instances to be up, but some 
require only ‘1 of 3’ instances, and some in fact are not 
strictly required at all (‘0 of 3’ instances). 

Two processes are common across all OpenContrail roles, 
the supervisor and the nodemgr processes. Specifically, there 
are five supervisors and five nodemgrs common to the roles. 

Each supervisor is dedicated to its respective node and 
role. From a resiliency standpoint, the main function of the 
supervisor is to auto-restart any failed processes within its 
node-role. Failure of the supervisor itself requires the entire 
node-role to be restarted (either immediately or at a later time 
such as a maintenance window). At the time of node-role 
restart, the other processes in the node-role must be manually 
killed, and the supervisor must be manually restarted, so that 
it can then auto-restart the other processes under its oversight. 
Until then, any process failures within that node-role require 
manual restart, but the remaining node-role functionality is 
unimpaired. In fact, the supervisor is a ‘0 of 3’ process; all 
instances can fail and functionality is unimpaired. 

Figure 1.  OperContrail 3.x processes by role. 

Role Process Role Process Role Process
config-api analytics-api vrouter-agent
discovery alarm-gen vrouter-dpdk
schema collector vrouter-nodemgr

svc-monitor query-engine supervisor-vrouter
ifmap redis

device-manager analytics-nodemgr
config-nodemgr supervisor-analytics

supervisor-config database (Config)
control zookeeper (Config)

dns database (Analytics)
named kafka (Analytics)

control-nodemgr database-nodemgr
supervisor-control supervisor-database
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Each nodemgr is dedicated to its respective node and role. 
If a nodemgr fails, other processes in that node-role continue 
to function, but process state visibility is lost (process status 
data is not fed to the associated Analytics collector process) 
until the nodemgr is auto-restarted by its supervisor, but the 
remaining node-role functionality is unimpaired. In fact, the 
nodemgr is also a ‘0 of 3’ process; all instances within a role 
can fail and functionality is unimpaired. 

With the exception of the supervisor processes, failure of 
any instance of any process of any role in any node does not 
impact the entire node-role in which it resides; that is, the 
other functioning processes in the node-role continue to 
function and are not impacted when that process is restarted. 

Table I summarizes the node processes and failure modes.  
All Config, Control, and vRouter processes are auto-restarted 
by their supervisor. All Analytics processes are auto-restarted 
by their supervisor except for the redis process, which is not 
under supervisor control and requires manual restart. All 
Database processes require manual restart except for the 
nodemgr process, which is auto-restarted by the supervisor. 

The control process plays a special role in host vRouter 
DP functionality. In particular, the per-host vrouter-agent 
process (described later) is normally connected in round-
robin fashion to two control processes in separate Control 
nodes at any point in time. Thus, normally roughly equal 
numbers of all host vrouter-agent processes are connected to 
control-1 and -2, to control-1 and -3, and to control-2 and -3. 

If control-1 fails, all vrouter-agent processes connected to 
control-1 will rediscover (typically within a minute) the 
unused control process, and every vrouter-agent will then be 
connected to control-2 and control-3. If control-2 then fails, 
every vrouter-agent will then be connected to only control-3. 
In this scenario, the host DPs are not interrupted because every 
vrouter-agent is always connected to at least one control 
process. If control-3 subsequently fails, then every host DP 
will go down because BGP forwarding tables will be flushed. 

TABLE I.  OPENCONTRAIL 3.X NODE PROCESS AND FAILURE MODES 

Role Process Name SDN CP Host DP 

Config 

config-api 1 of 3 0 of 3 
discovery 1 of 3 1 of 3 
schema 1 of 3 0 of 3 

svc-monitor 1 of 3 0 of 3 
ifmap 1 of 3 0 of 3 

device-manager 1 of 3 0 of 3 

Control 
control 1 of 3 1 of 3 

dns 0 of 3 1 of 3 
named 0 of 3 1 of 3 

Analytics 

analytics-api 1 of 3 0 of 3 
alarm-gen 1 of 3 0 of 3 
collector 1 of 3 0 of 3 

query-engine 1 of 3 0 of 3 
redis 1 of 3 0 of 3 

Database 

cassandra-db (Config) 2 of 3 0 of 3 
cassandra-db (Analytics) 2 of 3 0 of 3 

kafka 2 of 3 0 of 3 
zookeeper 2 of 3 0 of 3 

vRouter 
vrouter-agent 0 of 1 1 of 1 
vrouter-dpdk 0 of 1 1 of 1 

In the unlikely event that two control processes fail 
simultaneously, then the one-third of vrouter-agent processes 
connected to those two Control nodes will drop packets until 
the affected vrouter-agent processes connect to the remaining 
control process. Once connection is reestablished, the host 
DP will resume without the need for process restart. For the 
analysis to follow, we assume that the impact of simultaneous 
control process failures on host DP availability is negligible. 

Similar behavior applies to the dns and named processes. 
Each host is attached to two Control nodes, where DNS 
requests from VMs on that host are processed. The ‘1 of 3’ 
requirement for host DP availability means that we must have 
at least one of the collection {control + dns + named} on the 
same Control node available. For example, having only 
control-1 and dns-2 and named-3 available is not sufficient 
for host DP availability, and packets will be dropped. Thus, 
the collection {control + dns + named} is a ‘1 of 3’ process 
block required for DP availability across all hosts. 

The four Database processes are the only ‘2 of 3’ quorum 
processes in the Controller, and a lack of quorum of any of 
these processes only impacts the SDN CP, not the host DP. 

Any vrouter-agent or vrouter-dpdk process failure takes 
down the DP for the entire host. The agent is essential to 
evaluate what policy to apply to a flow, so if a vrouter-agent 
fails it will impact the DP traffic for that host. Prefixes of VMs 
sitting on that host will disappear from the routing 
tables/advertisements. In a DPDK deployment, the vRouter 
runs in user space and uses the DPDK library to optimize 
access to the underlying HW. If the vrouter-dpdk process fails, 
then the vRouter function cannot be executed. 

IV. REFERENCE DEPLOYMENT TOPOLOGY 
Theoretical availability analysis of any distributed SDN 

controller requires that we define a specific HW deployment 
topology. In particular, we must specify layout of Controller 
roles on VMs or containers, as well as layout of Controller 
node VMs on physical host servers and on common HW 
elements such as racks. Specifically, we consider three 
scenarios called Small, Medium, and Large. We again 
consider the minimal case of a 2N+1=3 Controller node 
cluster for the analysis. The approach can easily be extended 
to larger cluster configurations. 

In the Small topology (top left of Fig. 2), the four critical 
Controller roles (confiG, Control, Analytics, Database) run 
within a single VM (labeled GCAD). Each of the three 
Controller node VMs (GCAD1-3) run on three separate hosts 
(H1-3) in a single shared rack (R1). Next, in the Medium 
topology (top right of Fig. 2), the four Controller roles run in 
separate VMs (G1-3, C1-3, A1-3, and D1-3). Each of the three 
sets of Controller node VMs run on three separate hosts (that 
is, G1 … D1 all run on H1, G2 … D2 on H2, and G3 … D3 
on H3). Hosts H1 and H2 still reside in a shared rack (R1) but 
now H3 resides in a separate rack (R2). Finally, in the Large 
topology (bottom right of Fig. 2), the four Controller roles 
again run in separate VMs, but now each of the 12 Controller 
node VMs runs on its own separate host (G1 on H1, C1 on H2, 
…, D3 on H12). Each of the three sets Controller node VMs 
and hosts now run in three separate racks (H1-4 running 
node 1 VMs G1 … D1 in R1, H5-8 in R2, and H9-12 in R3). 
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Figure 2.  Reference hardware deployment topologies. 

V. HW-CENTRIC AVAILABILITY ANALYSIS 
Given the three reference HW deployment topologies, we 

can compute the Controller availabilities. Let AC denote the 
availability of an individual instance of any Controller role, 
and assume for simplicity that the availability of each role is 
the same (i.e., the availabilities of each instance of Config, 
Control, Analytics, and Database roles are all equal). Let AV 
denote availability of an individual VM (including guest OS). 
Let AH denote availability of a host (including host OS and 
hypervisor). Let AR denote availability of a rack. Finally, Let ܣ/(ߙ) denote availability of at least m of n parallel blocks, 
where α denotes the availability of a single block. Then 

(ߙ)/ܣ = ቊ ∑ ቀ݊݅ቁିୀ αି(1 − (ߙ ݉ ݎ݂ ≤ ݊0 ݉ ݎ݂ > ݊ .
Block availability α can represent a single element, such 

as a role instance, or a combination of elements in series, such 
as {role+VM+host}. For simplicity, shorthand notation ܣ/ 
is used in lieu of ܣ/(ߙ) in the results to follow, and the 
value of α is specified in the particular context. 

For this HW-centric analysis, we do not consider 
individual processes within a role.  Rather, we assume that 
each of the 12 Controller nodes is an atomic element. Thus, in 
a 3-node cluster, at least 1 out of 3 nodes of the Config, 
Control, and Analytics roles must be available for the 
Controller to be available, and at least 2 out of 3 nodes of the 
Database role must be available. 

A. Small Topology 
In the Small topology, each node’s roles run on the same 

VM and host. In order to quantify availability, we must first 
condition on the combined {VM+host} availability, namely 

ܣ =  ுଶ(1ܣଶܣ3(ݑ ݏݐݏℎ 2|ܣ)+ுଷܣଷܣ(ݑ ݏݐݏℎ 3|ܣ) − ு(1ܣܣ3(ݑ ݐݏℎ 1|ܣ)+(ுܣܣ − ு)ଶܣܣ   ோ. (2)ܣ

In the third term, (1|ܣ ℎݑ ݐݏ) = 0 since the ‘2 of 3’ 
quorum requirement for the Database role is violated if only 
one host is up. Next, in the second term, with two hosts up 
we need ‘1 of 2’ nodes to be available for three roles (Config, 

Control, and Analytics) and ‘2 of 2’ nodes to be available for 
the Database role. Thus (ݑ ݏݐݏℎ 2|ܣ) = ଶ/ଶܣଵ/ଶଷܣ ହ(2ܣ= −  )ଷ. Finally, in the first term, with three hosts upܣ
we need ‘1 of 3’ nodes to be available for three roles and 
‘2 of 3’ nodes for one role. Thus, (3|ܣ ℎݑ ݐݏ) ଶ/ଷܣଵ/ଷଷܣ= = ହ൫3ܣ − ܣ3 + ܣ ଶ൯ଷ(3 −  ,). In summaryܣ2
the Small topology Controller availability AS is given by 

ௌܣ = ቈ ଶ/ଶ(1ܣଵ/ଶଷܣு  +3ܣܣଶ/ଷܣଵ/ଷଷܣ − ு)ܣܣ  ோ (3)ܣுଶܣଶܣ

where ߙ =  /. It can be shownܣ  in (1) for expressionsܣ
that ܣௌ ≈ ߙ ோ, whereܣଶ/ଷܣ =  ଶ/ଷ. Thisܣ ு in (1) forܣܣܣ
simplified approximation makes intuitive sense; in the Small 
topology, {role+VM+host} is equivalent to a single element 
(of which 2 of 3 are required) in series with the single rack. 

B. Medium Topology 
In the Medium topology, the four Controller roles run in 

separate VMs and the hosts reside in two racks. In this case, 
the term α in (1) for the expressions ܣ/  represents the 
combined {role+VM} availability ߙ = ܣܣ . To quantify 
availability, we first condition on rack availability, namely 

ܣ =  ோ(1ܣ(݊ݓ݀ ଶܴ ݑ ଵܴ|ܣ)+ோଶܣ(ݑ ଶܴ ݑ ଵܴ|ܣ) − ோ(1ܣ(ݑ ଶܴ ݊ݓ݀ ଵܴ|ܣ)+(ோܣ − ோ)ܣ . (4) 

In the third term, (ܣ|ܴଵ ݀݊ݓ ܴଶ ݑ) = 0  since the 
Database quorum requirement is violated if rack 1 is down. 
In the second term, (ܣ|ܴଵ ݑ ܴଶ ݀݊ݓ) = ுଶܣଶ/ଶܣଵ/ଶଷܣ ுଶ(2ܣହߙ= − .ଷ(ߙ  Finally, the first term requires that we 
further condition on the host availability, namely (ܣ|ܴଵ ݑ ܴଶ ݑ) = ுଶ(1ܣ3(ݑ ݏݐݏℎ 2|ܣ)+                                  ுଷܣ(ݑ ݏݐݏℎ 3|ܣ) − ு(1ܣ3(ݑ ݐݏℎ 1|ܣ)+                                 (ுܣ −  ு)ଶ. (5)ܣ

(ݑ ݐݏℎ 1|ܣ) = 0 since the Database node quorum is 
violated if only one host is up. Next, (2|ܣ ℎݑ ݏݐݏ) ଶ/ଶܣଵ/ଶଷܣ= = ହ(2ߙ − ଷ(ߙ . The first term (3|ܣ ℎݑ ݏݐݏ) ଶ/ଷܣଵ/ଷଷܣ= = ହ(3ߙ − ߙ3 + ଶ)ଷ(3ߙ − .(ߙ2  Thus, Medium 
topology Controller availability AM is given by 

ெܣ = ቈ ଶ/ଶ(4ܣଵ/ଶଷܣ+ுܣଶ/ଷܣଵ/ଷଷܣ − ுܣ3 − ோ)ܣ  ோ (6)ܣுଶܣ

where ߙ = ெܣ /. Again, it can be shown thatܣ  in (1) forܣܣ ≈ ோܣଶ/ଷܣ ≈ ௌܣ , where ߙ = ுܣܣܣ  in (1) for ܣଶ/ଷ . 
This approximation also makes intuitive sense; in Medium 
topology, {DB role + DB VM + host} is equivalent to a single 
element (of which 2 of 3 are required) in series with the rack 
hosting the quorum of elements. The other 1 of 3 {role+VM} 
elements have only second-order effects on availability. 
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C. Large Topology 
Finally, in the Large topology, each of the 12 Controller 

VMs runs on its own host and each Controller node resides 
in its own rack. In this case, the term α in (1) for the 
expressions ܣ/ represents the combined {role+VM+host} 
availability ߙ = ுܣܣܣ . In order to quantify availability, 
we must again first condition on the rack availability, namely 

ܣ         =  ோଶ(1ܣ3(ݑ ݏ݇ܿܽݎ 2|ܣ)+ோଷܣ(ݑ ݏ݇ܿܽݎ 3|ܣ) − ோ(1ܣ3(ݑ ݇ܿܽݎ 1|ܣ)+(ோܣ − ோ)ଶܣ  . (7) 

(ݑ ݇ܿܽݎ 1|ܣ) = 0 since the Database node quorum is 
violated if only one rack is up. Next, (ݑ ݏ݇ܿܽݎ 2|ܣ) ଶ/ଶܣଵ/ଶଷܣ= = ହ(2ߙ − (ݑ ݏ݇ܿܽݎ 3|ܣ) ଷ. The first term(ߙ ଶ/ଷܣଵ/ଷଷܣ= = ହ(3ߙ − ߙ3 + ଶ)ଷ(3ߙ − .(ߙ2  Thus, the Large 
topology Controller availability AL is given by ܣ = ோܣଶ/ଷܣଵ/ଷଷܣൣ + ଶ/ଶ3(1ܣଵ/ଶଷܣ −  ோଶ (8)ܣோ)൧ܣ

where ߙ =  /. Now, it can be shownܣ ு in (1) forܣܣܣ
that ܣ ≈ ߙ ଶ/ଷ, whereܣ =  ଶ/ଷ. Thisܣ ோ in (1) forܣுܣܣܣ
approximation also makes intuitive sense; in Large topology, 
{DB role + DB VM + DB host + rack} is effectively a single 
element (of which 2 of 3 are required). The other 1 of 3 
{role+VM+host} elements have only second-order effects. 

D. Comparative HW-Centric Availability Results 
Based on rules of thumb from years of Telecom industry 

experience, we assume in the example to follow that 
AC = 0.9995, AV = 0.99995, AH = 0.9999, and AR = 0.99999. 
These values are intended to represent ballpark parameters, 
and the results to follow are intended for relative, qualitative 
comparisons (rather than absolute, quantitative assessments). 
The resulting relative comparisons and observations remain 
the same regardless of the actual values used. Large-scale 
studies of enterprise failure rates do exist (c.f. [14]), but 
industry-standard failure rates are difficult to establish [15]. 
And even if statistically reliable failure data were readily 
available, availabilities will depend on recovery procedures.  

Actual parameter values depend heavily on the particular 
controller SW fault rates and auto-recovery capabilities, VM 
and container technologies, server HW failure rates, vendor 
maintenance contracts, etc. Thus, SW and HW availabilities 
will always depend on the chosen technology. For example, 
enterprise-grade servers may have a mean-time-between-
failure (MTBF) in the 5-year range [16]. In a hardened Telco 
data center with spare HW on-site and 24x7 staffing, the 
maintenance level is considered Same Day (SD), typically 
corresponding to a 4-hour mean-time-to-restore (MTTR). In 
a cloud data center, the maintenance contract could be Next 
Day (ND), typically translating to a 24-hour MTTR after 
accounting for intra-day incident timing, or Next Business 
Day (NBD), typically translating to a 48-hour MTTR after 
also accounting for intra-week incident timing [17]. Given 
these various scenarios, AH = MTTF/(MTTF+MTTR) can 
range from 0.9990 (NBD) to 0.9995 (ND) to 0.9999 (SD). 

Fig. 3 shows OpenContrail Controller availability as a 
function of Controller role availability AC ϵ [0.9995 ± 0.0005] 
for the Small, Medium, and Large reference HW topologies, 
with AV = 0.99995, AH = 0.99990, and AR = 0.99999. As can 
be seen, with role availability AC = 0.9995, Controller 
availability is 0.999989 for the Small and Medium topologies 
and 0.999999 for the Large topology. As the role availability 
AC ranges between 0.999 and 1.0, the Small and Medium 
availabilities range between 0.999986 and 0.999990 while 
Large availability ranges between 0.999996 and 0.9999999. 

We can draw several important conclusions from this 
HW-centric analysis. First, although separation of roles onto 
separate VMs (S→M) offers the ability to independently 
scale roles for capacity planning, it does not improve 
availability. With role separation, there are 4x as many VMs 
to fail, but the impact of each VM failure is roughly ¼. The 
same is true for host separation (M→L). Although this effect 
is masked by the impact of the additional rack separation 
(discussed later), separation of VMs onto separate hosts does 
not improve availability. With VM separation, there are 4x as 
many hosts to fail but the impact of each failure is roughly ¼. 

Second, rack separation does not improve availability 
unless three racks are employed. In fact, contrary to 
expectation, adding a second rack (S→M) actually slightly 
reduces availability, since the ‘2 out of 3’ quorum still exists 
on a single rack. In both the Small and Medium topologies, 
failure of rack R1 causes complete Controller failure because 
two of the three nodes reside on that one rack. But in the 
Medium topology, we have added a second rack R2 and its 
associated failure modes. So there are 2x as many racks to 
fail, but the impact of a rack failure is > ½ because of the 
overweight significance of rack R1 failures. 

In contrast, adding the third rack (M→L) does improve 
availability. With AC = 0.9995, Controller availability 
increases from 0.999989 to 0.999999 (a savings of 
5 minutes/year in downtime), since the ‘2 of 3’ quorum is not 
broken by a single rack failure. From an availability 
standpoint, the conclusion is clear: one rack or three, but not 
two. Furthermore, the space and expense of multiple racks 
must be weighed against the relatively modest improvement 
in availability between the Small and Large deployments. 

In conclusion, this high-level approach offers a simple yet 
powerful methodology to quantify Controller availability as 
a function of key parameters. Perhaps more importantly, this 
HW-centric approach provides a means to quickly and easily 

Figure 3. OpenContrail cluster availability (HW-centric). 
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perform relative sensitivity analyses on various possible HW 
deployment topologies, thus facilitating evaluation of the 
cost:resiliency tradeoff before capital investment occurs. 

VI. SW-CENTRIC AVAILABILITY ANALYSIS 
As useful as we have shown it to be, the previous HW-

centric approach still only treats the Controller roles as equal, 
atomic SW elements. In reality, the four role types each 
consist of distinct SW processes with distinct failure modes 
(outlined in section III). Thus, the assumptions in section V 
regarding equal role availability AC for all roles and role-level 
quorum requirements can be further fine-tuned with a more 
SW-centric focus. Furthermore, this more detailed approach 
allows us to separately quantify availability of the SDN 
control plane (CP) and per-host vRouter data plane (DP). 
Based on the results in section V (in particular, the 
observations regarding the lack of resiliency impact of VM 
and host separation, and rack separation onto less than three 
racks), the SW-centric analysis will focus only on the two 
extreme cases of the Small (S) and Large (L) HW topologies. 

A. Supervision and Restart 
From a reliability modeling standpoint, the supervisor 

processes require special consideration. As discussed in 
section III, each critical Controller role (Config, Control, 
Analytics, and Database) has its own supervisor process. 
Thus, there are 3 nodes x 4 roles = 12 supervisor processes in 
a 3-node configuration, plus the per-host supervisors for the 
vRouter DP role. The supervisor is responsible for auto-
restarting failed processes within their respective node-role. 

If a particular supervisor process dies, the other 
supervisors in any other nodes or roles do not assume 
responsibility for that node-role. For example, if the 
supervisor in Config node 2 dies (call this process supervisor-
config-2), then every other process in the config-2 node is 
running in an unsupervised mode. Neither the supervisors for 
other Config nodes, nor the supervisors for other node 2 
roles, can assume supervision of Config node 2. All config-2 
processes remain unsupervised until supervisor restart. 

Furthermore, as described in section 3.1, if a particular 
supervisor dies, any failed processes within that supervisor’s 
node-role must be manually restarted until the supervisor 
itself is manually restarted, and manual restart of a supervisor 
requires that every process in its node-role be killed prior to 
supervisor restart so that the supervisor can then auto-restart 
those processes under its oversight and control. 

These behaviors lead to the need to analyze two cases: 
 The optimistic upper bound case where the supervisor 

is not required for continued node-role operation. In 
this option, we assume that the node-role will be 
brought down and the supervisor restarted during the 
next maintenance window in a hitless manner. 

 The realistic lower bound case where the supervisor 
is required for continued operation. In this option, we 
assume that all node-role processes are killed and the 
supervisor restarted immediately following its failure. 

These options impact the process availability parameters 
used in the analysis to follow. Let A denote availability of an 
individual process under supervisor control (auto-restarted), 

and let AS denote availability of an individual process that is 
unsupervised and requires manual restart (as an example, the 
supervisor process itself). Let F denote the process MTBF, 
let R denote the mean time to auto-restart a supervisor-
controlled process, and let RS denote the mean time to 
manually restart an unsupervised process such as the 
supervisor. Then A = F/(F+R) and AS = F/(F+RS). 

Assume for simplicity that F, R, and RS are the same for 
all associated processes in all roles (thus A and AS are the 
same for all supervised and unsupervised processes). As we 
will show, it is straightforward to relax this assumption in the 
following methodology, if appropriate. We have created two 
types of processes already, and we can easily expand to K 
process types if lab/field data for F suggest the need to do so.  

We assume in the example results to follow that 
A = 0.99998 (based on F = 5000 hours and R = 0.1 hour) and 
AS = 0.99980 (based on RS = 1 hour), along with the previous 
values for AV, AH, and AR. These variables are parameters in 
the model and can easily be changed. Again, the results to 
follow are intended for relative, qualitative comparisons 
(rather than absolute assessments). In order to reflect 
differing degrees of SW process maturity and auto-recovery 
capabilities with different SDN controller implementations, 
sensitivity analysis is performed as a function of process 
availability ܣ ∈ [0.99998 ± 1 order of magnitude]. 

If the supervisor is not required, then the actual process 
restart time depends on when the process fails during the (say 
10 hour) interval after the supervisor fails but before the next 
opportunity to schedule a maintenance window. Assuming F 
~ exponential, then Pr{failure during 10h supervisor outage}       
= 1–e–10/F = 0.002 and the actual process restart time R* =    
(e–10/F)R+(1–e–10/F)RS = 0.102 hours. Thus, the actual process 
availability A* = F/(F+R*) ≈ 0.99998. That is, process 
availability A is not measurably impacted in this scenario 1. 

In contrast, if the supervisor is required, then either the 
failure of a process or that of its supervisor causes the process 
to restart. In this case, the actual process failure interval F* = 
F/2 = 2500 hours (assuming equal failures rates) and the 
actual restart time R* = (RS+R)/2 = 0.55 hours. Thus, the 
actual process availability A* = F*/(F*+R*) ≈ 0.9998. That 
is, every process effectively inherits the supervisor 
availability AS in this scenario 2. 

As mentioned, some processes are not under supervisor 
control and thus require manual restart (e.g., redis). Table II 
lists the counts of processes within each role requiring auto 
and manual restart. When the supervisor is not required, 
processes in the four Auto columns have availability A and 
those in the four Manual columns have availability AS. When 
the supervisor is required, all processes effectively have 
availability AS regardless of their default restart mode. If 
additional process types are needed to account for different F 
(e.g., new vs. mature code), these counts in Table II can be 
further broken down (e.g., New-Auto, Mature-Auto, etc.). 

B. Quorum Requirements 
As discussed in section III, each Controller process has 

different quorum requirements for CP and DP availability. A 
few processes (notably within the Database role) require 
‘2 of 3’ instances to be available, most require only ‘1 of 3’ 
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instances to be available, and some are not strictly required at 
all for CP or DP functionality. Let MR denote the number of 
role R processes requiring ‘2 of 3’ instances available, and let 
NR denote the number of role R processes requiring ‘1 of 3’ 
instances available, where R = G (Config), C (Control), 
A (Analytics), or D (Database). Table III shows the values for 
MR and NR based on the failure mode analysis in section III. 
The analyses to follow are expressed in terms of variables MR 
and NR for generality and extensibility to other controllers. 

Tables II and III fully encapsulate OpenContrail 3.x. 
Other Controller implementations can be accommodated 
simply by modifying the rows, columns, and values in these 
tables. For example, we model two process types (from an 
availability standpoint): Auto and Manual. If a different SDN 
controller has more than two distinct recovery modes, or 
processes with distinct maturity levels, then additional rows 
can be added to Table II. We model four nodes types. If a 
different controller has functionality partitioned differently, 
then columns (rows) can be added to or removed from Table 
II (III). If a different controller has a different process count 
required for CP and DP operability, then values in each cell 
of Tables II and III can be changed. Although the analysis in 
the next sections may rightfully seem tedious, inclusion of 
this analysis is essential to demonstrate how these differences 
among different SDN controllers easily translate into simple 
changes in the mathematical formulation. 

C. Small Topology, Supervisor Not Required (1S) 
We first consider the (optimistic upper bound) case where 

the supervisor processes are not required in the Small 
topology (option 1S). As in section V, in order to quantify 
availability, we must first condition on the {VM+host} 
availability. In this case, the Small topology SDN CP 
availability ACP for the 1S option is given by 

ܣ = ቈ ுଷܣଷܣ(ݑ ݏݐݏℎ 3|ܣ) ுଶ(1ܣଶܣ3(ݑ ݏݐݏℎ 2|ܣ)+ − ு)ܣܣ  ோ, (9)ܣ

where  (ݔ|ܣ ℎݑ ݏݐݏ) = ൫ܣଶ/௫൯∑ ൫ܣଵ/௫൯∑  , (10) 

TABLE II.  COUNTS OF PROCESSES BY RESTART MODE BY ROLE 

Restart Mode Config Control Analytics Database 
Auto 6 3 4 0 

Manual 0 0 1 4 

TABLE III.  COUNTS OF PROCESSES BY QUORUM TYPE BY ROLE 

Role SDN CP Host DP 
Quorum Type M N M N 

Config G 0 6 0 1 
Control C 0 1 0 1* 

Analytics A 0 5 0 0 
Database D 4 0 0 0 

Sums 4 12 0 2 
* {control+dns+named} is a ‘1 of 3’ process block required for DP  

availability, modeled as single process with availability A3. 

and ߙ = ܣ  in (1) for the expressions ܣ/  and ∑ ோܯ  and ∑ ோܰ denote the sums for all roles R = G, C, A, D for the SDN 
CP in Table III. Thus, the Small topology SDN CP 
availability ACP for the 1S option is given by ܣ = ቂ൫ܣଶ/ଷ൯∑ ൫ܣଵ/ଷ൯∑ ܣଷܣுଷ+൫ܣଶ/ଶ൯∑ ൫ܣଵ/ଶ൯∑ 3(1 − ுଶቃܣଶܣ(ுܣܣ  ோ. (11)ܣ

Intuitively, this expression makes sense. CP availability 
is the sum of the conditional probabilities of functional 
availability in two cases, when 3 of 3 {VM+host} blocks are 
up and when 2 of 3 blocks are up, each weighted by their 
corresponding probabilities. Functional availability is given 
by the product of individual role availabilities, consisting of ∑ ோܯ  quorum processes and ∑ ோܰ  non-quorum processes. 
This sum is multiplied by the availability of the shared rack. 

The host DP availability consists of two components, the 
shared contribution from Controller-based roles (impacting 
the DP for every host) and the local contribution from the 
host-based vRouter role (impacting the DP only for that host). 
The expression for shared DP availability ASDP is identical to 
(11) except that exponents  ∑ ∑ ோ andܯ ோܰ are instead based 
on the Host DP columns in Table III. Next, the expression for 
the local DP contribution to availability ܣ =  , whereܣ
(again) A denotes individual process availability, and 
K denotes the number of host-based vRouter processes that 
must be available. (K = 2 in OpenContrail, vrouter-agent and 
vrouter-dpdk.) Combining, the Small topology per-host DP 
availability ܣ is given by ܣ = ܣ ௌܣ =  .ܣ(ௌܣ)
D. Small Topology, Supervisor Required (2S) 

We next consider the (realistic lower bound) case where 
the supervisor processes are required in the Small topology 
(option 2S). Again conditioning on {VM+host} availability, 
the Small topology SDN CP availability ACP for the 2S option 
is given by (9). In order to quantify availability in the case 
when the supervisor processes are required, we must further 
condition on the supervisor process availability, namely (ݔ|ܣ ℎݑ ݏݐݏ) =              (ܣ|݃, ܿ, ܽ, ݀)ܲ(݃, ܿ, ܽ, ௫.(ݔ|݀

ௗୀଵ
௫

ୀଵ
௫

ୀଵ
௫

ୀଵ  (12) 

,݃|ܣ) ܿ, ܽ, ݀)  denotes the Controller availability with 
g Config, c Control, a Analytics, and d Database supervisor 
process instances available, given by (ܣ|݃, ܿ, ܽ, ݀) = ൫ܣଶ/൯ృ൫ܣଵ/൯ృ൫ܣଶ/൯ి൫ܣଵ/൯ి                           × ൫ܣଶ/൯ఽ൫ܣଵ/൯ఽ൫ܣଶ/ௗ൯ీ൫ܣଵ/ௗ൯ీ, (13) 

where ߙ =  /, and MR and NR denote the roleܣ in (1) for ܣ
R values for the SDN CP in Table III. 

229



Next, ܲ(݃, ܿ, ܽ, (ݔ|݀  denotes the probability (given x 
hosts up) of g Config, c Control, a Analytics, and d Database 
supervisor process instances available, given by ܲ(݃, ܿ, ܽ, (ݔ|݀ = ቀ݃ݔቁ ቀܿݔቁ ቀܽݔቁ ቀ݀ݔቁ                                  [ߩାାାௗ(1 −  ସ௫ିିିିௗ], (14)(ߩ

where ߩ =  .ௌ is the supervisor process instance availabilityܣ
Combining, the SDN CP availability ACP for the 2S option 

is given by (9,12-14) where ߙ =  ,/ in (13)ܣ in (1) for ܣ
MR and NR in (13) denote the role R values for the SDN CP 
in Table III, and ߩ =  ௌ in (14). Again, the expression for theܣ
shared DP availability ASDP is identical to (9,12-14) except 
that exponents MR and NR in (13) are instead based on the 
Host DP rows in Table III.  

Again, this expression for CP availability (while dense) 
makes intuitive sense. CP availability is still the sum of the 
weighted conditional functional availabilities in two cases, 
3 of 3 {VM+host} blocks up and 2 of 3 blocks up, but when 
supervisor processes are required, conditional availabilities 
are more complicated. Now, functional availability must be 
further conditioned on supervisor process availability. There 
are 4x3 possible cases with three {VM+host} blocks up, and 
4x2 cases with two blocks up, given in (12). For instance, (3,1,2,3|ܣ)  denotes the conditional availability with 
3 Config, 1 Control, 2 Analytics and 3 Database supervisor 
instances up. The corresponding probability weights are more 
complicated as well. There are multiple combinations with 
the appropriate numbers of supervisor instances up or down, 
as given in (14). For instance, ܲ(3,1,2,3|3)  denotes the 
conditional probability of 3 Config, 1 Control, 2 Analytics, 
and 3 Database supervisor process instances up and the rest 
down, given 3 {VM+host} blocks up. 

Finally, the expression for the local DP contribution to 
per-host DP availability when the host vRouter supervisor 
process is required ܣ = ,ௌܣܣ  where (again) A is the 
individual process availability, K denotes the number of host-
based vRouter processes that must be available, and AS is the 
individual supervisor process availability. Combining, the 
per-host DP availability ܣ is given by ܣ =  .ௌܣܣ ௌܣ
E. Large Topology, Supervisor Not Required (1L) 

We next consider the (optimistic upper bound) case where 
supervisor processes are not required in the Large topology 
(option 1L). Again, in order to quantify availability, we must 
first condition on the rack availability. In this case, the Large 
topology SDN CP availability ACP for 1L option is given by ܣ = ோଶ(1ܣ3(ݑ ݏ݇ܿܽݎ 2|ܣ)+                                ோଷܣ(ݑ ݏ݇ܿܽݎ 3|ܣ) −  is given by (12-14) where x now denotes (ݑ ݏ݇ܿܽݎ ݔ|ܣ) ோ). (15)ܣ
the number of available racks rather than hosts; g, c, a, and d 
denote the number of available Config, Control, Analytics, 
and Database {VM+host} blocks rather than supervisor 
process instances; and ߩ =  ு. Combining, the SDN CPܣܣ
availability ACP for 1L option is given by (15,12-14) where 

ߙ =  / in (13), MR and NR in (13) denote roleܣ in (1) for ܣ
R values for the SDN CP in Table III, and ߩ =  .ு in (14)ܣܣ
Intuition for this expression mimics that of option 1S. 

Again, the shared DP availability ASDP is identical to 
(15,12-14) except that exponents MR and NR in (13) are 
instead based on the Host DP rows in Table III. Next, the 
local DP availability ܣ = .ܣ  Combining, the per-host 
DP availability ܣ is given by ܣ =  .ܣ ௌܣ
F. Large Topology, Supervisor Required (2L) 

Finally, we consider the (realistic lower bound) case 
where the supervisor processes are required in the Large 
topology (option 2L). As before, we must first condition on 
the rack availability. We then further condition on the 
{supervisor+VM+host} availability. The analysis is identical 
to that of option 1L except that ߩ =  ு in (14) ratherܣܣௌܣ
than ܣܣு. That is, the Large topology SDN CP availability 
ACP for 2L option is given by (15,12-14) where ߙ =  in (1) ܣ
for ܣ/ in (13), MR and NR in (13) denote the role R values 
for the SDN CP in Table III, and ߩ = ுܣܣௌܣ  in (14). 
Intuition for this expression mimics that of option 2S. 

Again, the shared DP availability ASDP is identical to 
(15,12-14) except that exponents MR and NR in (13) are 
instead based on the Host DP rows in Table III, and local DP 
availability ܣ = .ௌܣܣ  Combining, the per-host DP 
availability ܣ is given by ܣ =  .ௌܣܣ ௌܣ
G. Comparative SW-Centric Availability Results 

We assume in the example to follow that the (default) 
individual process availability A = 0.99998 and the (default) 
supervisor process availability AS = 0.99980, along with the 
previous values for AV, AH, and AR. The figures show 
OpenContrail availability as a function of process availability ܣ ∈ [0.99998 ± 1 order of magnitude of downtime (DT)]. 
That is, the center of the x-axis range (value of 0) corresponds 
to defaults A = 0.99998 and AS = 0.9998. The left-most side 
of the x-axis (with value of –1) corresponds to A = 0.9998 
and AS = 0.998 (1 order of magnitude less reliable, i.e., 10x 
more DT), and the right-most side of the x-axis (value of 1) 
corresponds to A = 0.999998 and AS = 0.99998 (1 order of 
magnitude less DT). A and AS are varied in lock-step. 

First, Fig. 4 shows SDN CP availability ACP as a function 
of A for the Small and Large HW deployment topologies with 
and without supervisor processes required. As can be seen, 
with default individual process availability A = 0.99998, 
ACP exceeds 0.999987 for the Small topology and 0.999997 
for the Large topology. Requiring the supervisor increases 
downtime from 5.9 to 6.6 minutes/year (m/y) in the Small 
topology and from 0.7 to 1.4 m/y in the Large topology. 

The addition of two racks to create the Large topology 
saves 5 m/y of CP DT. While this savings sounds modest 
relative to the cost of two additional racks, it is important to 
realize that this value is an average. In reality, the single-rack 
Small topology may experience no rack-related downtime for 
many years followed by a highly-publicized extended outage. 
AR = 0.99999 could consist of a rack failure every 500 years, 
lasting two days to deliver new HW and rerack servers. But 
for a network or content or video service provider with 500  
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Figure 4. OpenContrail SDN CP Availability ACP  (SW-Centric). 

edge sites, a yearly outage may be unacceptable. The analysis 
shows that these outages can be avoided with rack separation. 

If process availability A decreases by 1 order of 
magnitude to 0.9998 (and AS to 0.998), CP availability ACP 
decreases rapidly, the impact of rack separation becomes less 
relevant (Small and Large topologies begin to converge), and 
impact of the supervisor process becomes more pronounced. 
When supervisor is required, the dominant failure mode is: 
one Database supervisor failure and any Database process 
failure in another node, taking down two Database instances, 
resulting in quorum loss. When supervisor is not required, the 
dominant failure mode is: two failures of the same Database 
process in different nodes. The dominant SW failure mode in 
any implementation derives from the weakest link, typically 
the combination of quorum needs and process availability. In 
the case of OpenContrail, these factors converge for Database 
processes (all required for a quorum and all requiring manual 
restart), and the Database supervisor process in particular. 

At the other extreme, when process availability A 
increases by 1 order of magnitude to 0.999998 and AS to 
0.99998, ACP levels off quickly, the impact of the supervisor 
process becomes irrelevant, and the impact of rack separation 
in the Large topology becomes the key differentiator. The CP 
availabilities with and without the supervisor required 
converge to 0.99999 (Small topology) and to 0.9999998 
(Large topology). The difference is due to rack separation. 

Next, Fig. 5 shows host DP availability ADP as a function 
of A for the Small and Large topologies with and without 
supervisor processes required. As can be seen, with process 
availability A = 0.99998, DP availability ADP = 0.99975+ for 
both Small and Large topologies when vRouter supervisor is 
required, and 0.99995+ when the vRouter supervisor is not 
required. The difference is due entirely to the vRouter 
supervisor. Requiring the supervisor increases downtime by 
5x from 26 to 131 m/y in the Small topology and by 6x from 
21 to 126 m/y in the Large topology. Again, the third rack in 
the Large topology saves 5 m/y of SDP downtime. Other than 
this 5 m/y, there is little difference between the Small and 
Large topologies (as expected), since total DP availability is 
dominated by the identical host vRouter LDP availability. 

If individual process availability A decreases 1 order of 
magnitude to 0.9998 (and AS to 0.998), DP availability ADP 
decreases rapidly, and supervisor process impact becomes 
more pronounced. Small and Large availabilities converge to 

Figure 5. OpenContrail DP Availability ADP  (SW-Centric). 

0.9976 (supervisor required) or to 0.9996 (supervisor not 
required). When the supervisor process is required, the 
dominant failure mode is failure of any supervisor. When the 
supervisor process is not required, the dominant failure mode 
is failure of either vRouter process. At the other extreme, 
when process availability A increases by 1 order of magnitude 
to 0.999998 (and AS to 0.99998), DP availability ADP levels 
off quickly. Small and Large DP availabilities converge to 
0.999976 (supervisor required) or to 0.999996 (supervisor 
not required). Again, the difference is due to rack separation 
in the SDP contribution to total DP availability. 

VII. CONCLUSIONS 
Given the critical role that distributed Software Defined 

Networking controllers such as OpenContrail play in cloud 
computing and networking architectures, understanding their 
resiliency profile is crucial. In this work, we decompose the 
SDN controller node into its various roles, and drill down to 
the process level. We analyze the Controller process failure 
modes and their effects on the intra-element SDN control 
plane and the subtending host vRouter data planes within a 
cloud environment (data center). We develop HW- and SW-
centric parametric availability models for a variety of HW 
topologies and SW modes of operation to predict availability 
and quantify sensitivity to platform and process resiliency. 

Overall, the results suggest that the Controller SW can 
achieve very high levels of availability. In contrast, analysis 
of vRouter SW resiliency uncovered process single points of 
failure, and suggests that the host vRouter DP may achieve 
much lower availability and may limit host-level resiliency. 
Identifying these process weak links allows service provider 
operations to develop automation to reduce downtime and 
improve vRouter availability, and provides the Open Source 
community with focus areas for code improvements. 

The high-level, HW-centric approach offers a simple yet 
powerful methodology to quantify Controller availability as 
a function of key parameters. More importantly, this 
approach provides a means to quickly perform relative 
sensitivity analyses on various HW deployment topologies, 
thus facilitating evaluation of the cost:resiliency tradeoff 
before capital investment occurs. For a HW deployment on 
one or two racks and a ‘2 of 3’ quorum SW implementation, 
we show that the Controller availability is approximately 
given by    ܣ ≈ ଶ(3ߙ − ߙ ோ, whereܣ(ߙ2 =  ,ு, and ACܣܣܣ
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“supv required” means node processes failed
following supervisor failure until supervisor
manually restarted (realistic lower bound)
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AV , AH, and AR respectively denote the Controller node, VM, 
host, and rack availabilities. For a HW deployment on three 
racks, we show that Controller availability is approximately 
given by ܣ ≈ ଶ(3ߙ − ߙ where instead ,(ߙ2 =  .ோܣுܣܣܣ

A number of important observations can be deduced 
regarding the underlying HW deployment topology. First, the 
separation of roles onto separate VMs does not improve 
availability. With role separation, there are 4x as many VMs 
to fail, but the impact of each VM failure is roughly ¼. The 
same is true for separation of the VMs onto separate hosts. 

Second, rack separation does not improve availability 
unless three racks are employed. Contrary to expectation, 
expanding from one to two racks actually reduces 
availability. In both the one- and two-rack deployments, 
failure of a particular rack causes complete Controller failure 
because the ‘2 of 3’ quorum still resides on one rack. But 
adding a second rack adds its associated failure modes. So 
there are 2x as many racks to fail, but the impact of a rack 
failure is > ½ because of the overweight significance of 
failures of the quorum rack. In contrast, adding a third rack 
does improve availability, since the quorum is not broken by 
the failure of any single rack. From an availability standpoint 
in a ‘2 of 3’ quorum deployment, the conclusion is clear: 
one rack or three racks, but not two. 

The space and expense of a second and third rack must be 
weighed against the availability improvement. The addition 
of two more racks saves a few minutes/year of downtime. 
While this sounds modest relative to the cost associated with 
two additional racks, it is important to realize that this is an 
average. In reality, the single-rack topology in each site will 
experience no rack downtime for many years followed by a 
highly-publicized extended outage. For a network or content 
service provider with many cloud sites, the resulting frequent 
high-profile outages may be unacceptable. 

The detailed SW-centric approach developed in this paper 
yields additional insights that can only be gained from a 
process-level analysis. For instance, as individual process 
availability decreases, SDN CP availability decreases 
rapidly, the impact of rack separation becomes less relevant, 
and the impact of the supervisor process becomes more 
pronounced. At the other extreme, as individual process 
availability increases, CP availability quickly levels off, the 
impact of the supervisor process becomes irrelevant, and the 
impact of rack separation becomes the key differentiator. 
Next, as individual process availability decreases, host DP 
availability decreases rapidly, and the impact of the 
supervisor process becomes more pronounced. At the other 
extreme, as process availability increases, DP availability 
quickly levels off, and the impact of the supervisor process 
becomes less relevant. In all cases, the impact of rack 
separation remains constant. Again, the third rack saves a few 
minutes/year of downtime on average. 

Although OpenContrail is used as an example, we 
develop a flexible, extensible analytic modeling framework 
that can be used to assess the relative availability of any 
distributed SDN controller. We encapsulate the Controller 
SW implementation into two tables and develop the 
mathematical framework around these inputs so that other 

implementations can be analyzed simply by populating the 
tables appropriately. The parametric model framework is thus 
highly flexible and easily adaptable to other distributed SDN 
controller implementations through straightforward changes 
to a well-defined set of parameters. Furthermore, we evaluate 
HW topologies spanning the extremes from the smallest 
reasonable scenario to the largest scenario necessary for 
complete quorum process separation.  

To the best of our knowledge, this work represents the 
first effort of its kind to address the process-level dynamics 
and quantitatively assess intra-element SDN controller SW 
failure modes and availability at the Controller process level. 
Future work includes simulating the topologies to validate the 
conclusions, and leveraging the results to pinpoint areas for 
machine learning automation to reduce downtime and 
identify opportunities for Controller SW improvements. 
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