
FocusStack: Orchestrating Edge Clouds Using Location-Based Focus of Attention

Brian Amento, Bharath Balasubramanian, Robert J. Hall, Kaustubh Joshi, Gueyoung Jung, K. Hal Purdy
AT&T Labs Research, Bedminster, NJ

{brian, bharathb, hall, krj, gjung, khp}@research.att.com

Abstract—Allocating and managing resources in the Internet of
Things (IoT) presents many new challenges, including massive
scale, new security issues, and new resource types that become
critical in making orchestration decisions. In this paper, we
investigate whether clouds of edge devices can be managed as
Infrastructure-as-a-Service clouds. We describe our approach,
FocusStack, that uses location based situational awareness,
implemented over a multi-tier geographic addressing network,
to solve the problems of inefficient awareness messaging and
mixed initiative control that IoT device clouds raise for tradi-
tional cloud management tools. We provide an extended case
study of a shared video application as initial demonstration
and evaluation of the work and show that we effectively solve
the two key problems above.

1. Introduction

Since its inception, edge computing has focused on com-
puting facilities associated with the last mile of the Internet.
Increasingly , small-form-factor devices that connect to the
last mile, such as television set-top boxes, network gateways,
cars, and drones, themselves present an interesting target
for building a managed computing platform that can serve a
rich set of new applications. The applications range from
traditional network edge services such as content caches
or WAN accelerators, to more novel ones such as privacy-
preserving big-data analytics on set-top boxes, connected
cars, Internet-of-Things (IoT) sensor sharing applications
allowing (e.g.) video sharing from specific locations, and
applications allowing users to lease remote-sensing and
computation resources in a fleet of drones.

This paper asks whether such a distributed collection of
edge devices should be managed just like an Infrastructure-
as-a-Service (IaaS) cloud-computing data center by leverag-
ing traditional cloud orchestration tools. A key assumption
is that the devices are managed, at-least in part, by a single
controlling entity, such as a cable provider with a collection
of set-top boxes, an operator deploying a fleet of drones,
or an auto manufacturer providing a managed computing
platform in its cars. The platform we seek to build considers
each mobile edge device the approximate equivalent of
a compute server, however with a local stakeholder that
may also take critical management and control actions from
time to time. Tenant applications, potentially sourced from
different developers, may be deployed to these devices
via containers. These application instances coordinate with

instances on other devices in the system to perform tasks
with local or platform-wide scope. Control plane nodes in
the cloud orchestrate the management of these “distributed
virtual data centers” of edge devices, and allow both tenants
and administrators to interact with this edge cloud. Through
this interface, tenants deploy new application instances and
update existing ones, configure instances to communicate
safely over virtual networks, and provide secure access to
storage resources.

Despite similarities to the traditional cloud IaaS model,
such an approach presents many unique challenges. For
starters, the edge devices in question often have very limited
compute and memory, and in the case of drones, limited
energy as well. Second, the network environment is dra-
matically different from the typical data center, complete
with nodes that may be constantly moving and have inter-
mittent connectivity with variable quality. Third, the ratio
of compute to control nodes is dramatically different. With
thousands to potentially millions of devices attaching to a
small set of cloud controllers, the control plane must achieve
very high levels of efficiency. Last but not least, these
devices often need mixed initiative management that is very
distinct from the traditional cloud provider and the tenant
separation. Specifically, in addition to the cable or auto
company that manages the entire platform, and application
providers that manage the apps, each edge device may also
be co-managed by the end-user who actually owns it (e.g.,
the car or set-top box owner). The cloud platform must
then not only be able to factor in the user’s preferences and
actions in any deployment decision making, but it also must
be able to protect the overall platform from compromises of
individual edge devices.

In this paper, we make the key observation that many
of these challenges can be addressed by an intelligent geo-
and context-aware messaging bus that allows the “focus of
attention” of the cloud control plane to be scoped based
on context that includes the device location, edge device
health and capabilities, and user authorization preferences.
We call this capability location based situational awareness.
Devices which are not in the current focus of attention are
neither tracked by the cloud control plane, nor participate in
any control plane protocols. Doing so not only minimizes
the resource utilization of the edge devices, since they do
not need to provide periodic updates to the cloud, but it
also allows the cloud control plane to be more efficient
and scalable, since it only needs to handle a small subset
of devices at any one time. Finally, such dynamic scoping

2016 IEEE/ACM Symposium on Edge Computing

978-1-5090-3322-5/16 $31.00 © 2016 IEEE

DOI 10.1109/SEC.2016.22

179

is essential for handling edge devices that are constantly
moving, and may be disconnected from the network at any
given time; such devices are simply excluded from the focus
of attention of the current orchestration task. The message
bus also provides core security features - by only allowing
authenticated nodes to communicate over the message bus
and revoking their credentials if an edge device is “rooted”,
it protects the control plane from compromised endpoints.

We have built such a cloud, called FocusStack by com-
bining OpenStack [1], one of the most popular open source
cloud management platforms, with the AT&T Labs Geocast
System (ALGS) [2], a multi-tiered geographic addressing
(GA) network subsystem that allows packets to be sent to
(all devices in) a geographic region instead of a specific set
of IP endpoints, as in IP unicast or multicast. FocusStack
can be deployed on an unmodified installation of OpenStack,
and can deploy applications that are packaged as Docker [3]
lightweight OS container instances to “compute nodes” run-
ning on small-form factor devices. Each application con-
tainer can access a full suite of cloud capabilities including
the ability to create private and public virtual networks as
well as direct access to cloud resources colocated with the
controller nodes including cloud storage and VM instances
that provide additional compute capabilities. Through some
analytical analysis and simple experimental measurements,
we show the benefits in efficiency and scalability provided
by the use of “focus of attention” as a core primitive. Finally,
we demonstrate FocusStack’s capabilities through a case
study in which we build a cloud of Raspberry Pi’s installed
in cars and drones, and use it to deploy a video sharing appli-
cation that combines in-car dashcams with drone-mounted
webcams to provide a platform for sharing video streams
captured in real time by drones and cars moving in real
world environments.

In brief, the novel contributions of our work include

• the FocusStack method for location based awareness
and orchestration in an edge cloud;

• a report on an extensive case study of the approach in
the domain of video sharing among mobile devices;

• an initial analysis and evaluation of the advan-
tages, limitations, and future work needed of the
FocusStack approach.

2. Motivating Examples

We begin by listing a few use cases for FocusStack
that illustrate the benefits of situational awareness. We then
describe the Shared DashCam use case that we use as a
running example throughout the paper, and which we have
prototyped on FocusStack.

2.1. Use cases

FocusStack can be used to manage clouds that comprise
a variety of endpoint types with a range of characteristics:
a) Customer premise devices such as set-top boxes, edge
routers, or WiFi access points are increasingly built using

general purpose CPUs such as Atom or ARM and run com-
modity OSes such as Linux (e.g., DD-WRT [4]). Providers
could call on these devices to provide a number of services
ranging from usage analytics to environment sensing. While
these devices have limited compute and memory capabil-
ities, they generally have good network connectivity and
power, and are not mobile. b) Cars are rich sensor platforms
not just for the wealth of data they directly collect on
engine performance [5], but also for their ability to measure
their environment including factors such as weather, traffic
conditions, terrain (potholes, etc.), and driving habits. A
number of parties including auto manufacturers, city plan-
ners, insurance companies, as well as drivers themselves
can benefit from analytics based on car sensor data. In
addition to constraints on compute and memory, cars have
additional challenges due to mobility and variable network
connectivity. c) Drones are the ultimate mobile platforms,
with energy constraints and extreme variability in network
conditions as they fly in and out of radio range. General
purpose drone platforms can be useful as a video-acquisition
platform for hire, as well as environmental sensing and
tracking. Next, we provide some examples.

Car diagnostics It’s been unseasonably cold in the north
east United States. Fast Motors Inc. wishes to understand
how the cold temperatures have affected engine perfor-
mance. While it is not feasible (for volume and privacy
reasons) to continuously upload detailed diagnostics data
from all cars at all times, it is possible to write a simple one-
time app to read specific CAN bus data and run analytics to
estimate engine performance. They can use FocusStack to
deploy the app to a small sample of cars in New England.
When the study is complete, the app is no longer needed,
and can be removed from the cars.

Viewership Analytics CableCorp wants to understand dif-
ferences between TV viewing habits of their LA and NYC
viewers. Using FocusStack’s geoaddressing primitives, Ca-
bleCorp can identify and deploy two Hadoop instances in
their target regions, each with their own virtual networks.
Then, using a simple map-reduce job whose mappers mea-
sure channel change events, and whose reducers compute
aggregate statistics, CableCorp can compute the aggregate
results they need without ever collecting individual users’
TV viewing history.

Drones For Hire RentMyEyes flies a fleet of connected
drones equipped with cameras and environmental sensors.
These drones wait for remote sensing jobs to be submitted
over the Internet. Each job is represented by a target area the
drone must fly to along with an app that the drone should
run once there. Once at the target, the app is authorized to
collect and analyze data from the drone’s camera and sensors
in real time, and potentially adjust the drone’s flight plan
based on its analysis. On receiving the job, RentMyEyes
can use FocusStack to identify a drone close to the target
area with sufficient energy left, and deploy the app to it.

180

2.2. Shared DashCam

From the examples above, it is clear that location aware-
ness can play a meaningful role as a primitive around
which to structure cloud orchestration. Next, we describe
the Shared DashCam service, which we have implemented,
and use in the rest of the paper as a running example
to describe how FocusStack implements its location and
situational awareness capabilities.

The Shared Dashcam service allows subscribers to watch
real-time video generated either by dashcams in on-road
connected vehicles or in flying drones. Hereafter, the term
“vehicle” will refer to both on-road connected vehicles and
to flying drones. An application subscriber selects what
video source to watch based largely on the geolocation
and video camera orientation of other participating vehicles.
Such vehicles have a FocusStack device installed and are
connected to the Internet using cellular LTE data service.
Participating vehicles are owned by drivers who have agreed
to share video from the dashcam that is part of the edge
computing platform installed in their vehicles.
Avoiding Long Lines at the DMV: Alice needs to get her
yearly car inspection at the DMV. But, she’s wary of the
long lines she’s been running into recently. With the shared
DashCam app on her tablet, Alice can query for participating
vehicles in the vicinity of the closest inspection station that
are able and willing to share their video at the current time.
Shared Dashcam responds with a map of the area overlayed
with available edge nodes, one of which is an edge compute
node in Bob’s car. Alice can then tap on Bob’s node icon
to have FocusStack deploy a Shared Dashcam container to
Bob’s car and send her the video feed, providing her the
ability to assess the potential wait time.
Fall colors: Bob wants to go on a road trip to see some
fall foliage, but he doesn’t know where the peak colors are.
Online foliage maps are often out of date. Bob can use
Shared DashCam to call up video from cars and drones
running FocusStack in a couple of the areas he is considering
before he decides whether it is worthwhile to drive there.
Drone Event Watching Many people wish to watch The
Pope’s speech in New York’s Central Park but cannot at-
tend. The NYPD flies several authorized drones over the
area, providing video from a selection of viewpoints. They
prohibit all other drones from the area. Dashcam remote
users can select from among the available device feeds to
watch the event, based on desired angle, distance, etc.

2.3. Need for Situational Awareness

In the above scenarios, situational awareness plays a key
role in not just the semantics of the service, but also in
enabling efficiency and scalability. Assuming that the cloud
cannot afford to actively monitor the operations of every
edge device at all times, we need an architecture that can
focus attention on the devices in an area of interest at a
time of interest, extract necessary situational information,
and take action on that information. Much can occur while
a device is either out of contact with the cloud or while

the cloud is not paying attention, including battery failure,
operator actions (including application installation and in-
vocation), environmental events affecting device operations,
etc. Our approach must handle these possibilities.

For example, Highway I-5 is a long straight road running
the length of California along which, most of the time,
nothing interesting happens. While it transports thousands of
cars per day, only a tiny fraction of them would be tasked
to source video by the Dashcam application. The health,
computational state, and opt-in state, of the rest is irrelevant
to Dashcam and would require significant cellular bandwidth
to report at all times. For those that actually are of interest,
we require a method for gaining fresh intelligence on their
computational and resource states at the time of interest.

Motivated by these considerations, our primary require-
ment for FocusStack’s awareness function is to obtain
awareness information when and only when attention is fo-
cused on a geographic area. Consequently, the applications
best suited for use with FocusStack are those similar to the
ones described in the previous use cases, that is, where the
application needs to be deployed and active on edge devices
which are within a circumscribed geographical area.

A second key requirement is motivated by the observa-
tion that an application is clearly not interested in all IoT
devices in a particular area. The Dashcam application is
only interested in participating camera carrying devices. A
remote sensing application is interested only in the envi-
ronmental sensors providing information of interest. Thus,
FocusStack’s awareness component must be capable of lim-
iting the scope of queries so that only a narrow subset of
all IoT devices in an area will even reply.

Finally, different applications require different awareness
information. The Dashcam application is interested only in
the computational, communications, energy, and opt-in state
of participating vehicles. It is not interested in information
relevant to other applications, such as remote auto mainte-
nance data, sensor data from nearby field sensors, battery
level information from nearby smartphones, etc. However,
other applications may indeed want these other types of
information. Thus, FocusStack must be able to query for
custom sets of application-specific awareness information.

In the event that more than one edge device meets the
criteria relevant to a particular application, the set of edge
devices meeting the application criteria is presented to the
application for further application specific selection. It is
then up to the individual application to decide whether to
invoke and run application elements on one or more of the
edge devices in the set presented to the application.

3. FocusStack Architecture

We have built an architecture that supports deploying
heterogeneous applications to a diverse set of possible IoT
edge devices. These devices are potentially limited in com-
pute power, energy, and connectivity and are frequently mo-
bile. One of our goals is to build a platform that handles the
underlying details of discovering an appropriate collection
of edge devices (based on location, sensor capabilities, etc)

181

Figure 1. FocusStack Architecture

with the available resources to run the application, deploy
the application code to the devices, and launch the appli-
cation. Our platform enables developers to focus on their
application rather than on finding and tracking the various
edge computing devices where they will be deployed.

3.1. Overview

There are two major architectural components that to-
gether comprise the FocusStack platform. The first sub-
system, based on a Geocast primitive, provides location-
based situational awareness (LSA) of edge devices to the
second component, our OpenStack extension (OSE) that
allows deployment, execution and management of containers
on small edge computing devices with limited networking
capabilities. Figure 1 shows the overall architecture of Fo-
cusStack, which forms a hybrid cloud consisting of both
edge devices running lightweight Linux containers (based
on Docker), and cloud-based compute nodes that can run
virtual machines (VMs) like an IaaS cloud.

When a cloud operation (such as deploying a new
container instance) is invoked by calling the appropriate
FocusStack API, the LSA subsystem based on a Geocast
Georouter is first used to scope this request. It does so by
sending a geo-addressed message containing details of the
desired resource (e.g., what kind of sensors are needed, etc.)
to the target area identified by the request, and waiting for
responses from edge devices that satisfy the requirements,
and are currently healthy and connected to the network.
The resulting “focus of attention” list of edge nodes is then
used to seed the appropriate OpenStack operation with the
help of a component called the conductor. Figure 2 shows a
representative control message flow between an application
and the LSA and OSE components.

3.2. Situational Awareness Subsystem (LSA)

This section describes our implementation of Location
Based Situational Awareness (LSA) within our FocusStack
framework. FocusStack’s awareness component is based on
the FCOP algorithm [6], which is a distributed algorithm
using geographically addressed (GA) messaging. In our
implementation, we use the AT&T Labs Geocast System
(ALGS) [2] for GA messaging.

App
Server

Conductor Geocast
Server

Edge
Node

Openstack
Server

Edge
Node

Deployment
request Discover

query
Geocast

Awareness		response

Nova	status
activate

Candidates,
Attributes

Filtered
Candidates,
Attributes

Openstack status

Candidate(s) nova	boot
Container,	net	
deploy

Figure 2. FocusStack Control/Message Flow

Figure 3. Schematic of the AT&T Labs Geocast System

3.2.1. Background: GA and the ALGS. In geographic
addressing (GA), a packet’s address consists of a subset
of physical space, with the meaning that the packet will
be transferred to all devices currently in that space. In the
ALGS system, such a subset is defined to be a circle on the
surface of Earth, described by the latitude and longitude and
its radius. A GA service is implemented in the network and
appears to the programmer as an API analogous to (and in
parallel with) the IP stack. In some implementations, a GA
service can even be used in the absence of IP addressing,
which can be of significant advantage in settings, such as
mobile ad hoc networks, where the overhead of maintaining
IP routing tables is onerous. [7]

The other major benefit of using a network GA service
to provide location based packet delivery, is that there is a
wide variety of location based applications (with more being
invented daily); if each has to implement its own method
of determining where clients are physically and routing to
them, the overhead would be multiplied accordingly.

The primary use of GA in FocusStack is to transport
query and response messages to, from, and between areas
of interest, in order to support our awareness component.
However, it is also used for command and control of devices
in some cases, such as drones, as well as for distributing
information on a per location basis. An example of the latter
would be to transmit definitions of areas in which video
recording is prohibited to all devices near those areas.

182

Figure 4. Packet georouting via the ALGS long range tier. The leftmost
client sends a GA packet up to the georouter server, which then sends a
copy to each client within the addressed region (dashed arrows).

The AT&T Labs Geocast System (ALGS) [2] imple-
ments a seamlessly integrated, two-tier network GA service.
A packet’s address, referred to as its geocast region, is
defined by a circle, where the packet header contains latitude
and longitude of the center of the circle and the radius in me-
ters. Packets sent via the ALGS can transit either an ad hoc
WiFi tier or a long range tier mediated by an internet-based
georouting service accessed through the 3G/4G/LTE/GSM
system. See Figure 3. Packets can be relayed across either
tier or both tiers; in some cases, a packet originating in one
ad hoc tier can be transferred to a long range capable device,
which will relay it over the long range tier to a device near
the destination region, where it will be relayed again across
the ad hoc WiFi tier to devices in the region.

In our prototype Dashcam system, devices do not
have WiFi capability, so the system depends entirely upon
ALGS’s long range tier. See Figure 4. An originating client
sends the packet up into the Georouter server (via LTE and
over the Internet), which determines which devices are in the
geocast region and routes copies to each of them. Note that
a client may be any device running the GCLib code, which
includes the ALGS software as a subsystem. This includes
edge devices as shown in Figure 1 and also cloud resident
components running an SAMonitor instance. Each green
arrow (LSA messages) represents GA messaging within
the LSA subsystem, as depicted in Figure 4. Location and
connectivity information are maintained in the georouting
database (GRDB). Reference [2] has further details.

Packets within the ALGS long range tier are transported
across IP networks as UDP messages. When a UDP packet
traverses a firewall or NATting router, assuming such is
not blocking UDP packets to geocast port numbers, the
firewall/NAT sets up state (sometimes known as a “UPD
connection”) that allows reverse-direction packets to go
from receiver to source along the same ports. ALGS exploits
this to allow bidirectional asynchronous messaging. Note
that UDP connections time out typically at between 1 and
3 minutes, so the ALGS system makes sure that an edge
device “refreshes” such connections periodically, through
sending either normal traffic or a small dummy packet up
to the server at a maximum time interval.

3.2.2. Background: The FCOP Algorithm. The Field
Common Operating Picture (FCOP) algorithm is a GA-

based distributed algorithm designed to enable each device
to update others on its current awareness information in a
scalable manner. More generally, it allows a group of devices
M all to monitor the awareness information of a group of
devices A. This general case is the monitoring problem.
We refer to the special case of M = A (when all devices
monitor all other devices) as the common operating picture
problem. This complex special case involves a quadratic
number (n2−n, where n is the number of devices) of logical
information flows.

Given a region R and an awareness query spec Q, FCOP
operates as follows on each device.

• Whenever the device has neither sent nor heard a
query message directed to a region including R
within the last P seconds, it sends a GA message
addressed to R containing Q.

• Whenever a device receives a query message con-
taining query spec Q, if it has not sent one or more
response messages back to a region including the
location of the querying device in the last P seconds
and containing all the information requested in Q,
it formats and sends a query response containing
the requested data blocks and directs it to a circle
around the querying device. Note that it may have
responded multiple times (to multiple queries), each
containing part of the requested information and that
would count as having responded as well.

• Whenever a device receives a query response mes-
sage containing information it is requesting, it
records the information in its operating picture
record for that device.

In our Dashcam prototype, we used P = 10 for the
awareness monitoring interval.

For full details of FCOP, the reader is referred to refer-
ence [6]. When GA messages are transported over the ad hoc
wireless tier, a message can in general be delivered in only
O(lg n) transmissions, so the full algorithm’s message com-
plexity is O(n lg n) messages. When using the long range
tier, since we are required to use unicast UDP messages
for the last link to each device, the worst case complexity
is O(n2) messages. However, even in that case, the FCOP
algorithm minimizes the constants involved in two ways.
First, by having the device only send queries when it has
not already heard one recently to the same area, there is in
general only one query message per P seconds. By having
devices accept and record information in the responses to
queries issued by other devices, the picture is assembled as
quickly as if each device sent its own query, but without the
need for all the redundant query messages.

3.2.3. The GCLib Framework. GCLib is a software
framework providing components access to GA messaging,
access to sharing of arbitrary data within the device (car,
drone, etc), and automatic support for the query/response
awareness function discussed below. GCLib is shown in
Figure 5. Components of GCLib talk to each other via TCP

183

Figure 5. GCLib framework software architecture.

streams over localhost socket connections via defined pro-
tocols whose details are suppressed here. These connections
are labeled either “GA Message Interface” or “Data Block
Interface” in Figure 5.

Referring to Figure 1, GCLib instances run in edge
devices and within the cloud application using SAMonitors.

The GCHub mediates access for all other components
to the ALGS GA network. To send messages, the payload
and address information is sent to the GCHub directly. The
GCHub then formats the information into a geocast packet
and uses the ALGS tiered geocast protocol to send it out. To
receive GA messages, each component registers interest with
the GCHub by specifying one or more tags (or prefixes of
tags); then, when a GA message is received, all components
having at least one tag-prefix matching the start of the GA
message payload are sent copies of the message.

The Pub component implements a publish/subscribe sys-
tem for data blocks, described below. Essentially, it provides
the plumbing for data to flow among components in a fully
pluggable way. Each component registers interest in data
block tags (or prefixes of them) and receives a copy when
a component publishes a block update with a matching tag.

The Responder component registers interest in incoming
query messages and all data block prefixes (i.e., the empty
prefix). It does the matching and formulates and sends the
response message in conformance with the FCOP protocol.

Sensors take measurements and periodically publish
their data to the Pub, which makes sensed data available
to the awareness messaging. Examples include components
that determine the current computational state (CPU load
averages, memory and storage utilization), energy level (e.g.
% of battery left for drones), or kinematic state (velocity,
acceleration, etc). Other components can use GA messaging
and/or Pub data facilities as desired as well; referring to
Figure 1, applications running in containers on the edge

devices can publish information into GCLib’s Pub so that it
can be available for retrieval in awareness messaging. For
example, FocusStack can focus on “all devices currently
sourcing video streams in a given area” by having the video
streaming component (running in a container on the edge
device) publish its streaming status into the Pub and then
having the SAMonitor awareness queries retrieve this status
information. Another usage pattern would be to use GA
messages to invoke actions on the edge device, where a
container on the edge device registers for particular types of
GA messages through GCLib’s GCHub and then takes ac-
tion on receiving them. For example, a location based cloud
application could send messages to all devices surrounding
a military base to “cease video sourcing in this area”.

3.2.4. Tags, Data Blocks, and Query Specifications. To
accommodate arbitrary applications, we need to systematize
how information is reported over the FCOP algorithm. That
is, rather than defining a custom message format for each
application, we instead provide a general tagging and re-
porting mechanism as follows.

A tag is a case-insensitive ASCII string consisting of
non-space characters enclosed in brackets. For example, the
[Energy] tag is used to denote a data block transporting
the percentage of total energy capacity currently available in
a device. Each application will typically use some common
tags, like [Energy], and will define its own application-
specific tags, such as [VideoEncoding]. To minimize
semantic conflicts between applications, we anticipate a
need for standardized ontologies to define tags’ meanings.

A data block is a sequence of bytes that starts with a
tag and optionally continues with fields representing infor-
mation. For example, the energy data block would look like

[Energy]b

Where b is a one byte integer between 0 and 100 rep-
resenting percentage of capacity. Data blocks can have
arbitrarily many fields, including zero. Zero-field blocks
can be used to identify simple boolean properties of
the device; for example, if a device has registered the
[App.Dashcam] tag, it indicates this device has opted
in to participating in the Dashcam application. Similarly,
registering [Device.Drone] would label a drone device
so that it can be distinguished from cars or other devices.

Data blocks come into being through on-board com-
ponents, such as sensors, publishing them into GCLib’s
publish/subscribe blackboard, the Pub. (See Figure 5.) Each
time a new sensor value is obtained, the component pub-
lishes it under the same data block, and the new value
replaces the old one. For example, each time the battery
energy level is read, the new level replaces the old one
under the [Energy] tag. This system is not used for all
data flows within the edge device, such as video streams,
which are managed by the Dashcam application and require
more complex buffering schemes.

A query specification (query spec) is a sequence of tags
preceded by a combinator. Currently, we have implemented
the [Q.AND] and [Q.OR] combinators.

184

• [Q.AND] means that to match the query
spec, a device’s Pub must contain a data
block for every tag. For example, to match the
[Q.AND][App.Dashcam][LLA][Energy]
query spec, the Pub must have all three of
[App.Dashcam], [LLA], and [Energy] data
blocks. This would request position and energy
information from all Dashcam participants in
the area of interest. (Note that “LLA” is a tag
representing the latitude, longitude, and altitude of
the device.)

• [Q.OR] means that to match the query spec,
the Pub must contain a data block for at
least one tag. For example, to match the
[Q.OR][Device.Drone][Device.Car]
query spec, the device must either be a car or
drone. This would report all drones and cars in the
area of interest.

The FCOP algorithm, on receiving a query spec via
the GCHub in the payload of a GA message, interprets it,
retrieving values from the Pub. In the case of [Q.AND]
queries, it must be able to retrieve data blocks for all tags
in the spec. For [Q.OR], it only must retrieve at least one
such data block. Assuming this matching succeeds, FCOP
then formats a query response and sends it out over the
GCHub to the region surrounding the querier.

3.2.5. FocusStack Monitoring Component. Each appli-
cation or service wishing to focus awareness on a region
creates an SAMonitor component. An SAMonitor is an
interface component used to communicate a query to the
LSA subsystem and to receive query responses and use them
to assemble a real time operating picture of the region in
question. It is built using the GCLib library.

The application gives the SAMonitor a circular geo-
graphic region, R, defined by a center latitude/longitude
pair and radius in meters. It also gives the SAMonitor a
query spec, Q, defining the information to be returned from
the devices in the area. In accord with FCOP, the SAMon-
itor periodically sends a GA message containing Q to (all
devices in) R; each device in possession of information
satisfying Q responds by sending a GA message back to
a circle containing the querier. In accord with FCOP, by
sending replies to a circle around the querier, not only do
we allow for possible mobility of the querier, but in the case
of cloud-resident services, this allows all services wishing
to monitor R to share both queries and responses, thereby
reducing traffic to and from the area.

Due to the dynamic nature of mobile applications, the
SAMonitor uses response messages to assemble an oper-
ating picture of the area of interest. This is a continually
updated data set recording the set of devices reporting
from the area, the information received from each device,
and the age of the information. A client application can
make decisions based on information recency, which can
improve service quality. For example, if a car has left the
monitored area, so that its information is relatively old, then

the Dashcam application can avoid selecting it when there
are other cars known that have more recent information.

Once the service determines that its task in region R is
complete, it deactivates the SAMonitor, removing the focus
of attention and stopping the query and response messages.

3.2.6. Use of Monitoring Within Orchestration. An ap-
plication needing to perform a task within a region sets up
an SAMonitor for the region with a query such as

[Q.AND][App.Dashcam][LLA][Energy][CompState]

In our Dashcam prototype, the SAMonitor is part of the
Dashcam App Server (see Figure 1) in the cloud.

To match this query, a device must first have opted in to
the Dashcam service so that it has the [App.Dashcam]
tag. Next, it must have position information, in the
form of latitude, longitude, and altitude, in order to
match the [LLA] tag. It must also have onboard sen-
sors reporting energy ([Energy]) and computational state
([CompState]). Note that energy, while not too critical
for cars, which have plentiful and renewable battery capac-
ity, is extremely important for drones, which are strongly
energy limited. Dashcam can run in cars, drones, or other
vehicles or venues; to restrict attention only to a particular
device type, one can add a tag, such as [Device.Car],
to the above query spec. Computational state includes such
dynamic measures as CPU load average(s) and amounts of
memory and storage.

The query response will have not only the tags, but the
sensed values for each tag type:

• [LLA] will include fields reporting the sensed
lat/long/alt values;

• [Energy] will include device energy level, as a
percentage; and

• [CompState] will include CPU load average(s)
and amount of free memory and storage.

The specific query spec used will be different for different
applications. For example, a remote sensing application may
request sensor data values other than those above, an auto
maintenance application might seek alarm log information,
engine temperature data, etc. Our general awareness frame-
work based on arbitrary tags and query specs accommodates
a wide range of domains and applications.

Once the operating picture is assembled, the informa-
tion is handed to the orchestration subsystem within OSE
(Conductor) to check that the device is capable of executing
the task and satisfies all pre-defined policy rules, such as
authorization by the device’s owner for executing the task.

Passing these checks, OSE then invokes nova to carry
out the management task. In our system, a message is
sent to invoke OpenStack mechanisms to accomplish the
management action by transporting OpenStack’s message
bus across a VPN tunnel set up from device to cloud.

Once the management actions are complete, the involved
devices need not stay in focus of attention, whether or not
the invoked edge device applications continue running on the
edge devices. The SAMonitor and orchestration mechanisms

185

can be deactivated until the next time the device comes
within focus of attention for some operation, while the edge
application(s) can continue their operations while outside of
FocusStack’s focus of attention if appropriate.

3.2.7. Mixed Initiative Control. The concept of Fo-
cusStack is to acquire awareness information about a device
only when needed. If the user or other stakeholder of a
device has taken management actions between times when
FocusStack is paying attention to it, our query mechanism
allows the control plane to reacquire a current picture of
relevant measures, such as computational state and the apps
and hardware resources are available on the device. The
operating picture (awareness information gathered using
LSA subystem) acquired at time T2 may have little or
no relationship to the operating picture acquired at T1,
due to management actions by other stakeholders. This
contrasts with the traditional cloud control model, where
if a stakeholder activates a process on a host, OpenStack
will not be aware of it. An example of this mixed initiative
control in a Dashcam system would be if the onboard device
were activated to run navigation or entertainment functions
in response to the driver or passenger, while FocusStack
operated the Dashcam application.

Note that this approach allows multiple FocusStack con-
trol planes to operate concurrently upon the same sea of
devices, though we have not as yet demonstrated this capa-
bility. Each control plane independently focuses its attention,
acquires the operating picture, takes action, and then moves
on. We expect this multiple-cloud mixed initiative model to
become prevalent when dealing with systems at the scale of
the Internet of Things.

3.3. OpenStack Extensions (OSE) Subsystem

In a standard OpenStack environment, virtual machines
are deployed and managed on compute nodes that are full-
fledged, heavy weight server machines. This approach isn’t
feasible with limited edge device compute nodes. We have
opted to integrate lightweight Docker containers with the
OpenStack management platform. With this combination,
we benefit from the portability, security and application iso-
lation of Docker containers while still sharing the rich set of
orchestration and management tools available in OpenStack
with other typical datacenter applications.

3.3.1. Edge Compute Nodes. Compute nodes require sev-
eral components to interact with our architecture. Nodes run
a custom version of Nova Compute that interacts with a local
Docker instance to launch and manage containers. When
active, Nova reports back to the OpenStack instance over
an IPSec tunnel instantiated at bootup. Location awareness
and messaging are provided by the AT&T Labs Geocast
System (Section 3.2). Devices use a GPS receiver to track
their location and report it to the server to allow geographic
addressing over the ALGS long range tier over LTE.

Containers running on the edge nodes are provided full
OpenStack services, including access to virtual networks,

configurable on a per-application basis. These virtual net-
works can be configured to provide container instances with
private connectivity both with other container instances as
well as with virtual machines running on regular compute
nodes in the cloud that also belong to the application.
The virtual networks are implemented using OpenStack’s
standard LinuxBridge neutron plugin which supports both
VLAN as well as VXLAN overlays. All edge node commu-
nications, including those between edge nodes, occur over
an IPSec tunnel running over the LTE cellular network that
connects the edge node to an OpenStack L3 (layer 3) net-
work node in the cloud. Such an L3 node runs virtual routers
that enable IP routing to occur between different virtual
networks. The architecture of LTE networks, which forces
traffic to be aggregated through a packet core aggregated in
regional sites [8] precludes local communication between
edge nodes over LTE. However, if the edge nodes have
direct connectivity via WiFi, they can leverage Geocast’s
adhoc networking capabilities for direct communication.

Using these facilities, its easy to start up applications
requiring multiple nodes, e.g., a Hadoop micro-cluster run-
ning on several edge nodes, as well as hybrid applications
requiring access to some cloud resources. E.g., the Shared
DashCam application instantiates a streaming video server
VM in the cloud to allow dashcam video from the edge apps
to be broadcast to multiple subscribers.

3.3.2. Cloud components. There are several cloud compo-
nents provided by the FocusStack architecture. The Geo-
cast georouter server is part of the LSA subsystem and
tracks the location and other metadata about each edge de-
vice, enabling geographic addressing. An application server
makes requests through a FocusStack API to the Geocast
SAMonitor and receives a list of available edge nodes in
a given geographic area. The decision to include a node
within a geographic area is made based on location, speed,
heading, altitude or other factors. This list is then sent to the
Conductor, a constraint solving algorithm described below,
for filtering. The Conductor chooses nodes based on their
capabilities and resource availability. For example, if an
application requires aggregated data from an accelerometer
and gyroscope, the Conductor can ensure that only nodes
with the correct sensors and adequate storage and cpu for
the computations are returned. Once the list of matching
nodes is generated, the application server can then select
the desired node(s) to deploy the application or present the
list to a user for final selection. The OpenStack Nova API
is responsible for managing and deploying applications on
the selected edge devices.

Once applications are deployed on the selected edge
devices, they need not remain in focus for the entire time that
the application is running on the devices. Even if OpenStack
Extensions components such as Nova Compute continue
to run on an edge node where an application is deployed,
these components may transition into a semi-quiescent state
in order to minimize communications and computational
burden on the cloud management system. Design details

186

for how this transition takes place and the nature of the
quiescent state are both subjects for future work.

3.3.3. OpenStack Messaging. OpenStack uses the Ad-
vanced Message Queue Protocol (AMQP) as implemented
by RabbitMQ for its messaging platform. Many OpenStack
components create component specific message queues at
initialization time. For example, an OpenStack compute
node would create a message queue whose node type is
”compute.” OpenStack messages directed to a topic ex-
change are delivered by the messaging system to all node
message queues whose node type corresponds to the topic.
This means that the majority of OpenStack messages are
multicast to every compute node managed by the system.
For a traditional cloud data center with high speed network-
ing links from OpenStack controller components to tens
or at most hundreds of compute nodes, such topic-based
message multicasting provides flexibility and decoupling
between message publisher and consumer.

With IoT, there are potentially millions of addressable
edge compute nodes, with limited and intermittent network
connectivity. It is infeasible to use the currnet OpenStack
messaging architecture in IoT. The LSA subsystem provides
us efficiency and scalability, by restricting the number of
OpenStack compute nodes to only those within the focus
of attention. The set of compute nodes in an OpenStack
instance becomes a dynamic, small subset of the universe of
edge devices. In OpenStack terms, the nova-compute service
is only started on devices which are in the focus of attention.
A FocusStack compute node ceases being an OpenStack
compute node either when it leaves or is no longer interested
in the geographic area of focus. With this key change to
the OpenStack architecture, the multicast nature of Open-
Stack messaging becomes efficient and scalable for IoT
applications while preserving the elegant, loosely coupled
properties of the existing OpenStack messaging design.

3.3.4. Conductor. Aside from the importance of their lo-
cation and their mobility, edge compute nodes incorporated
in FocusStack differ in other important ways from tradi-
tional compute resources in a cloud environment. First of
all, such edge nodes are very restricted in their available
resources (e.g., CPU, memory, and disk) as compared with
compute nodes in a traditional cloud. Additionally, other
unique characteristics of IoT devices should be considered
including sensor functions of edge nodes, battery or energy
levels, security-awareness, etc. To address the need for these
additional filters, we introduce a constraint solving compo-
nent, Conductor, which was originally designed as a scalable
deployment decision maker for cloud services in large-scale
cloud data centers [9]. Conductor efficiently searches for the
optimal deployment of cloud resources that meets a given
set of constraints (e.g., resource and energy availabilities)
and application requirements (e.g., sensor types and secu-
rity policies for deployment). In our current approach, we
integrate the constraint solving component of Conductor and
leave the final decision among possible candidate nodes for
the application. In order to incorporate the constraint solving

Figure 6. Shared Dashcam Hardware

component of Conductor into the IoT application space, e.g.,
the Shared Dashcam service, Conductor selects among edge
compute nodes that meet all constraints described above.

4. Evaluation I: Shared Dashcam Case Study

As previously described, the Shared Dashcam service
allows subscribers to watch real-time video generated either
by dashcams in connected cars or in flying drones.

4.1. Challenges of Node Mobility and Networking

Applications to support Shared Dashcam service use
cases are interesting edge computing systems because their
design and implementation require that desired resources be
located in the face of edge nodes that are mobile and have
limitations in their network connectivity.

Unlike the compute nodes in a cloud data center, the
resource of primary interest in the Shared Dashcam service
is video sources; in particular, active video sources near a
particular geolocation pointed at interesting things. Which
video sources are in which location right now is a dynamic
property of the service because nodes move around. In fact,
it is almost exclusively video sources which are right now
or have recently been mobile that are of the most interest.
A parked car is usually turned off and thus its dashcam
is also powered off, and, even if the dashcam were on
and the video available, a static view from a garage or
parking spot is unlikely to be of much interest to other
subscribers. The fact that nodes move around independently
of one another also stresses the networking design. Since
the video sources (vehicles) for the Shared Dashcam service
are outside most of the time, accurate geolocation is reliably
implemented using GPS and networking is based on cellular
LTE data service. However, even in today’s smartphone
focused world, reliable, robust cellular data service is not
always present, and when it is, connectivity to the Internet
is characterized by Network Address Translation (NAT) and
changing public IP addresses.

As is discussed in Section 3.2 ALGS implements ge-
ographic addressing and is therefore specifically designed
to accommodate computing nodes that are mobile, that
are ephemerally connected and whose underlying network
addresses change. However, the video streaming feature of

187

Figure 7. Shared DashCam Map Interface

the Shared Dashcam system is built upon standard TCP
networking and is quite fragile with respect to ephemeral
node network presence and changes of underlying public
IP addresses. Because of the network address translation
present in cellular data carrier networks, the problem of edge
nodes’ changing IP addresses is even harder since the edge
device itself is unaware of the IP address change. It uses
the private IP address that was given to it via the carrier
operated DHCP service when the device initially started up.

4.2. DashCam Application Implementation

In order to evaluate our FocusStack architecture we built
a prototype version of the Shared Dashcam service. The
edge compute device we chose is the Raspberry Pi 2 Model
B running Ubuntu Mate 15.10. We augmented the Raspberry
Pis with a 5MP, 1080p camera, GPS receiver and LTE
dongle. The hardware was installed in the target vehicles,
running off of the car battery, with the camera mounted on
the rearview mirror to provide a view of the road ahead.
(Figure 6) The system powers on when the car is started
and shuts down after the key is removed from the ignition.
The base software on the edge device is minimal, a docker
instance, the GCLib software (Section 3.2) architecture im-
plemented in Java, and a paired down version of Nova
compute. Initially, there is limited network traffic between
the device and the cloud. Infrequent awareness updates are
sent through Geocast to keep track of the location and
availability of the device. In a full deployment of this system
there could be thousands or millions of these devices, but
none of them interact with the cloud infrastructure until they
are required by another user of the application.

The user interface consists of an Android application
running on a tablet mounted in the vehicle. We have in-
tentionally separated the user interface from the rest of the
DashCam hardware to allow the flexibility of viewing shared
video from outside the vehicle, for example, at home waiting
for traffic to clear. There are a number of privacy concerns
that arise with any shared video system, but in order to
simplify the application description, we have omitted the
discussion of any user level privacy controls.

When the tablet application is started, a request is sent
to the application server to build an awareness picture of the

area of interest and retrieve a list of potential vehicles from
the LSA SAMonitor component. In addition to being located
in the area, these are devices whose current awareness infor-
mation shows they are willing to share their video and are
within a 10km radius. As described above, this list is further
filtered by the Conductor to return only nodes that have the
required capabilities and resources. Vehicles reported by the
LSA SAMonitor picture that survive this filtering phase are
displayed on a map interface to the user with a thumbnail
image of the current camera view, as shown in Figure 7. The
user then selects the desired vehicle to obtain its video feed.
Once a selection is made, the application server contacts
Openstack and triggers a download to the edge device in the
target vehicle. A docker container is then launched and the
application is deployed. When the video stream is requested
from the docker container, it begins streaming the live feed
over UDP back up to the application server. The feed is
then broadcast back down to any interested tablets. In a
traffic heavy area, we assume that there will be numerous
vehicles requesting the same video feed and hope to preserve
bandwidth by re-broadcasting the video rather than using
point to point connections.

4.2.1. DroneCam extension. Dashcam can run on a Rasp-
berry Pi mounted on a drone. Of course, there is no onboard
consumer of video, but the same approach to dynamic
sourcing of its onboard camera video applies as in the car
case. The LSA awareness picture now includes the altitude
in addition to position, and the filtering by Conductor may
include reasoning about available [Energy] by extending
LSA’s query spec to include that tag.

5. Evaluation II: Benefits of LSA

In this section, we compare the network and processing
costs of a full-time active monitoring system, essentially
similar to how OpenStack today monitors hosts within a
cluster, with FocusStack’s focus of awareness based ap-
proach using a simple calculation based on a single IoT
scenario: Dashcam at scale.

A full-time active monitoring OpenStack communicates
awareness messages at the rate of B bytes per P seconds
from each host. We use P = 10 as in our prototype. We have
measured B = 17509 bytes per 10 second interval generated
by full-time active OpenStack in our prototype. For a device
managed by FocusStack using the LSA subsystem, on the
other hand, we see awareness messages (one query plus one
response) totaling 358 bytes per P seconds as long as the
device is within focus of attention.

In addition, the operation of the ALGS long range
system requires that any device that has not sent a packet
to the long range server within the past L seconds send a
dummy GA packet to the long range server so that it may
record the current position and IP address information of the
device. Such packets in our current prototype are 122 bytes
(including headers), and we use L = 30, though this number
was chosen for convenience in debugging and should be
tuned to a larger value for large scale use. Therefore, to

188

summarize, devices within focus of attention will be actively
communicating , so do not send dummy packets, while
devices not in focus will only send dummy packets.

For our large scale Dashcam example, let us assume that
in the future all cars on U.S. roads become Dashcam devices,
and ignore all other IoT devices. Further assume that the
number of cars on U.S. roads stays the same as today,
approximately 253 million [10]. Wolfram Alpha reports
5100 accidents per day in the U.S. as of 2005; assume that
Dashcam users are interested in all and only these accidents.
Next assume the area of interest for an accident covers 1000
cars and the time of interest lasts 2 hours per accident.

In this scenario, OpenStack with full-time active
awareness monitoring would transfer approximately 38.2
quadrillion (3.82e16) bytes over LTE per day, and all of
these must be processed by the OpenStack control plane.
However, using instead FocusStack’s LSA awareness sub-
system, by contrast, would result in 88.7 trillion (8.87e13)
bytes of dummy packets sent up to the long range servers of
ALGS, plus only 1.31 trillion (1.31e12) bytes of awareness
messages for processing by the control plane.

Just viewing this Dashcam scenario in isolation, using
OpenStack with full-time active monitoring would cost 431
times as many bytes transmitted over LTE as our prototype
FocusStack. In terms of processing load, the OpenStack
control plane would have to process 23,875 times as many
bytes of awareness data as the control plane of FocusStack.

While these savings are substantial, it is important to
realize that the GA subsystem underlying FocusStack is a
shared resource, so that once we consider a future in which
there are many tens or hundreds of IoT applications using
it, the relative savings are much larger. In particular, all
dummy traffic is shared among all applications; i.e., a device
needs only to send one dummy packet no matter how many
FocusStack instances or FocusStack-based applications are
using the system. Furthermore, as more applications use the
system concurrently, more devices will be in some focus of
attention, so the dummy traffic will decrease, leaving only
the awareness traffic. We expect that further tuning (e.g. of
the L parameter) will reduce the dummy load even further.
Finally, in a multiple-control-plane scenario, each traditional
control plane must do its own active monitoring, effectively
multiplying the cost. In FocusStack, the awareness traffic
is proportional only to the number of applications and the
sizes of their attention focus regions, independent of how
many FocusStack control planes may be running.

6. Related Work

There has been a proliferation of work in recent times
in the area of edge computing, exploring the idea of com-
putation and storage being performed closer to the end user.
While the seminal work in [11] mainly envisaged the use
of stable compute resources near the edge, such as a set
of local multi-core computers, this has been extended to
other edge devices such as wireless gateways and set-top
boxes in more recent work [12], [13]. We too focus on
performing computations on edge devices forming virtual

clouds. The work in [12], which is thematically closest to
our work, presents a platform that allows central entities
like Netflix or a security-based camera vendor to utilize
the home wireless gateway to perform local computations
relevant to the user residing in that home. Their concept of
“chute” is very similar to our use of containers and is used to
share resources in a virtualized platform. The fundamental
difference between the work in these papers and our work,
is that their notion of the edge is very much defined by
proximity to the user while our notion of the edge is defined
by the focus of attention (such as the cameras near an
accident site). We dynamically instantiate virtual clouds in
these areas to serve the service need for a particular request.
Further, we integrate our service with the OpenStack cloud
service, making it much more viable for wide-spread use.

The scope of edge computing has been extended to
the mobile devices carried by the users which include
smart phones and tablets [14], [15]. These works make the
claim that mobile phones/devices now are strong enough
to actually host computation and hence mobile devices can
offload to any other mobile devices that are willing to share
free resources. We too forage for resources in every focus
of attention and handling device mobility is an important
part of our work. However, in these prior works, resource
discovery and orchestration is performed in a fully local
manner by the requesting device, and is limited in its
choices of forming the mobile cloud. In our work, a central
cloud, which has a global view of the available resources
orchestrates virtual clouds anywhere required, and hence a
user can request a service pertaining to any area as long as
it contains registered devices that are available and equipped
to perform the service.

There has also been several works in the area of cloud-
offloading [16], [17], [18], where resource constrained mo-
bile devices off-load some of their computation to a central
cloud. In our work too, when a task is being performed by a
bunch of devices hosting containers in a focus of attention,
the orchestrating cloud is also part of this computation. In
other words, rather than the edge devices off-loading their
work to the cloud, our model is always a hybrid model that
uses both the cloud and edge resources to perform tasks.

The concept of situational-awareness has been explored
in the literature [19], [20]. These works address the chal-
lenges in collecting and disseminating information from
edge devices (including mobile devices) that are present in a
disaster area. The main challenge they deal with is the adhoc
nature of the networks and the inherent fallibility of the
devices. In our work, we assume that the devices are always
connected to the LTE network and further, information
dissemination is performed based on geographic-addressing
and attribute tagging. Also, a central cloud and the edge
cloud controller (within an instantiated edge cloud) manage
the devices and the flow of information, leading to a much
more robust architecture, albeit dependent on connectivity.

There has been prior work on work-offloading to vol-
unteer machines [21], [22]. Even in our work, there can be
voluntary edge devices willing to participate in a computa-
tion. However, in the referenced prior work, the machines

189

are usually fixed machines with powerful computational
capabilities and the only criterion for their participation is
the availability of resources. On the other hand, in our work,
the devices are selected based on focus of attention and
availability. Further, the devices that may perform a certain
task need not be fixed and could vary significantly based on
mobility, failure and so on.

7. Limitations and Future Work

Extending the cloud model of orchestration to edge
devices raises new issues in security.

Edge devices cannot be trusted. In a normal data cen-
ter, all hosts are securely contained within physical security
boundaries and are accessible only to authorized personnel.
While this may not always be strictly true, security designs
based on this idealization have worked well for the most
part. However, edge devices are frequently not secured by
the same stakeholder who runs the cloud. Instead, they are
inside a car, drone, or home of a normal end user, or even
just outside in the natural world (sensors, edge caches).

It is a strong limitation of OpenStack that it trusts its
compute nodes and, if any compute node is compromised,
the entire cloud infrastructure may be brought down [23].
As we are extending OpenStack to model edge devices as
compute nodes, this trust of compute nodes becomes even
more unwarranted. Future work must address this fact and
attempt to limit the trust granted to edge device compute
nodes to a scope that is manageable.

In our current implementation, if a device’s misbehavior
is detected, we can revoke its ALGS credential, the cryp-
tographic key needed for packets to transit the GA system.
This removes the device from any further communication
with either the cloud or other devices, at least via the GA
system (so it won’t become a candidate host for future
orchestration actions, for example). Revocation of VPN
certificates could close off packets into the cloud as well.

Security is a trio, not a duet. In a typical cloud, orches-
tration actions need only be authorized by an application
authenticating to the cloud. Once the cloud is convinced
that a request comes from a known, authorized application,
it goes ahead with the action.

However, in our scenario, there is a third party involved,
namely the owner of the edge device. That is, we are not
proposing a model where one user’s application can just
force another’s device to execute arbitrary code. Instead,
there are three authentications that must be strong and
enforced: user to application, application to cloud, and user
to cloud. That is, for an orchestration action to proceed,
first a user must take an authentic and authorized action
within the application; next, the cloud must authenticate the
identity and authorization of the requesting application; and
third, the cloud must securely verify that the owner of the
target device(s) has authorized the requested action under
some known and current policy specification that has been
securely authenticated with the owner.

OpenStack has no concept of authentication of the owner
of a host to the cloud, because it implicitly assumes the data

center is under the control of the same entity who deployed
OpenStack into it. This is a limitation that must be studied
and addressed in future work.

Privacy of stakeholders also becomes a more compli-
cated issue when edge devices and their owners are consid-
ered. This is another area where additional work is needed.

Issues in Mixed Initiative Control We have only begun
to explore the issues in mixed initiative control (see Sec-
tion 3.2.7). In particular, we need a general policy frame-
work that allows a device owner/operator to express con-
ditions under which applications are authorized to execute
orchestration actions on the owned device. Such policies
may reasonably be expected to depend upon location, time,
identities of the parties involved, resource state, energy state,
and many others.

Secondly, we need to explore policies to allow safe and
understandable methods for determining when one com-
putation can usurp resources from another. For example,
safety critical applications must be given priority over en-
tertainment and other low priority applications. Further, the
owner/operator must have an appropriate priority relative
to the platform operator; for example, who decides when
software is upgraded? For which applications? There are
many interesting issues raised by mixed initiative control.

8. Conclusion

In this work we have addressed the question of how to
treat huge numbers of real world IoT devices as members
of a cloud, specifically attempting to make feasible the
communications and processing load by limiting awareness
messaging to only during times and at locations where a
transaction will take place, whether said transaction is a
management action, an invocation action, or another type.

Our primary contribution is the FocusStack approach,
based on location based situational awareness implemented
using geographic addressing feeding into an otherwise typi-
cal OpenStack installation. We have shown that this can re-
duce the awareness traffic by astronomical factors, bringing
the approach into the realm of feasibility. We have demon-
strated the approach through an extended and implemented
case study of a shared video application.

FocusStack solves two major problems standing in the
way of treating mass numbers of IoT devices as cloud
hosts. First, we show that we can reduce management
awareness traffic by huge factors through location based
situational awareness. The second problem, of dealing with
mixed initiative management control, which is not present
in a traditional cloud, is addressed by this same location
based awareness mechanism: even though arbitrary user
actions can take place during times when the cloud is not
paying attention, by building a current awareness picture
when needed, the cloud can still make informed and timely
management decisions when the cloud needs to do so.

We feel this work represents positive first steps toward
applying cloud management to large scale IoT device clouds
and should be pursued.

190

References

[1] “OpenStack.” http://www.openstack.org. Accessed: 2016-02-29.

[2] R. Hall, J. Auzins, J. Chapin, and B. Fell, “Scaling up a geographic
addressing system,” in Proc. of the 2013 IEEE Military Communica-
tions Conference, 2013.

[3] “Docker.” https://www.docker.com. Accessed: 2016-02-29.

[4] “DD-WRT.” http://www.dd-wrt.com/site/index. Accessed: 2016-02-
29.

[5] “The OpenXC Platform.” http://openxcplatform.com. Accessed:
2016-02-29.

[6] R. Hall, “A geocast based algorithm for a field common operating
picture,” in Proc. of the 2012 IEEE Military Communications Con-
ference, 2012.

[7] R. Hall, “An improved geocast for mobile ad hoc networks,” IEEE
Transactions on Mobile Computing 10(2), 2011.

[8] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M. Mao,
“Cellular data network infrastructure characterization and implication
on mobile content placement,” in Proceedings of the ACM SIGMET-
RICS joint international conference on Measurement and modeling
of computer systems, pp. 317–328, ACM, 2011.

[9] G. Jung, M. Hiltunen, K. Joshi, R. Panta, and R. Schlichting, “Ostro:
Scalable placement optimization of complex application topologies
in large-scale data centers,” in Proc. IEEE International Conference
on Distributed Computing Systems, (Columbus, OH), pp. 143–152,
June 2015.

[10] J. Hirsch, “253 million cars on u.s. roads; average age is 11.4 years,”
L.A. Times, June 2014.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” IEEE Pervasive Com-
puting, vol. 8, pp. 14–23, Oct. 2009.

[12] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: A multi-tenant
platform to dynamically install third party services on wireless gate-
ways,” in Proceedings of the 9th ACM Workshop on Mobility in the
Evolving Internet Architecture, MobiArch ’14, (New York, NY, USA),
pp. 43–48, ACM, 2014.

[13] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Services, MCS ’12,
(New York, NY, USA), pp. 29–36, ACM, 2012.

[14] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the Thirteenth ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing, MobiHoc ’12,
(New York, NY, USA), pp. 145–154, ACM, 2012.

[15] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femtoclouds:
Leveraging mobile devices to provide cloud service at the edge,” in
IEEE International Conference on Cloud Computing (IEEE CLOUD),
2015.

[16] Y. Igarashi, K. Joshi, M. Hiltunen, and R. Schlichting, “Vision:
Towards an extensible app ecosystem for home automation through
cloud-offload,” in Proceedings of the Fifth International Workshop on
Mobile Cloud Computing & Services, MCS ’14, (New York, NY,
USA), pp. 35–39, ACM, 2014.

[17] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, (New York,
NY, USA), pp. 49–62, ACM, 2010.

[18] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings
of the Sixth Conference on Computer Systems, EuroSys ’11, (New
York, NY, USA), pp. 301–314, ACM, 2011.

[19] K. Fall, G. Iannaccone, J. Kannan, F. Silveira, and N. Taft, “A
disruption-tolerant architecture for secure and efficient disaster re-
sponse communications,” in In ISCRAM, 2010.

[20] K. M. Hanna, B. N. Levine, and R. Manmatha, “Mobile distributed
information retrieval for highly-partitioned networks,” in IN IEEE
ICNP, pp. 38–49, 2003.

[21] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S.
Pande, “Folding@home: Lessons from eight years of volunteer dis-
tributed computing,” in Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, IPDPS ’09, (Wash-
ington, DC, USA), pp. 1–8, IEEE Computer Society, 2009.

[22] D. P. Anderson, “Boinc: A system for public-resource computing
and storage,” in 5th IEEE/ACM International Workshop on Grid
Computing, pp. 4–10, 2004.

[23] W. K. Sze, A. Srivastava, and R. Sekar, “Hardening openstack cloud
platforms against compute node compromises,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’16, (New York, NY, USA), pp. 341–352, ACM,
2016.

191

