
1

Joint Latency and Cost Optimization for
Erasure-coded Data Center Storage

Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih-Farn R. Chen

Abstract—Modern distributed storage systems offer large ca-
pacity to satisfy the exponentially increasing need of storage
space. They often use erasure codes to protect against disk
and node failures to increase reliability, while trying to meet
the latency requirements of the applications and clients. This
paper provides an insightful upper bound on the average service
delay of such erasure-coded storage with arbitrary service time
distribution and consisting of multiple heterogeneous files. Not
only does the result supersede known delay bounds that only
work for a single file or homogeneous files, it also enables a
novel problem of joint latency and storage cost minimization
over three dimensions: selecting the erasure code, placement of
encoded chunks, and optimizing scheduling policy. The problem
is efficiently solved via the computation of a sequence of convex
approximations with provable convergence. We further prototype
our solution in an open-source, cloud storage deployment over
three geographically distributed data centers. Experimental re-
sults validate our theoretical delay analysis and show significant
latency reduction, providing valuable insights into the proposed
latency-cost tradeoff in erasure-coded storage.

I. INTRODUCTION

A. Motivation
Consumers are engaged in more social networking and E-

commerce activities these days and are increasingly storing
their documents and media in the online storage. Businesses
are relying on Big Data analytics for business intelligence and
are migrating their traditional IT infrastructure to the cloud.
These trends cause the online data storage demand to rise
faster than Moore’s Law [8]. The increased storage demands
have led companies to launch cloud storage services like Ama-
zon’s S3 [9] and personal cloud storage services like Ama-
zon’s Cloud drive, Apple’s iCloud, DropBox, Google Drive,
Microsoft’s SkyDrive, and AT&T Locker. Storing redundant
information on distributed servers can increase reliability for
storage systems, since users can retrieve duplicated pieces in
case of disk, node, or site failures.

Erasure coding has been widely studied for distributed
storage systems [13, and references therein] and used by
companies like Facebook [10] and Google [11] since it
provides space-optimal data redundancy to protect against
data loss. There is, however, a critical factor that affects the
service quality that the user experiences, which is the delay in
accessing the stored file. In distributed storage, the bandwidth
between different nodes is frequently limited and so is the
bandwidth from a user to different storage nodes, which can
cause a significant delay in data access and perceived as poor
quality of service. In this paper, we consider the problem of
jointly minimizing both service delay and storage cost for the
end users.

Y. Xiang and T. Lan are with Department of ECE, George Washington
University, DC 20052 (email: {xy336699, tlan}@gwu.edu). V. Aggarwal and
Y. R. Chen are with AT&T Labs-Research, Bedminster, NJ 07921 (email:
{vaneet, chen}@research.att.com). This work was presented in part at the
IFIP Performance, Oct. 2014.

While a latency-cost tradeoff is demonstrated for the special
case of a single file, or homogeneous files with exactly the
same properties(file size, type, coding parameters, etc.) [40,
45, 49, 50], much less is known about the latency performance
of multiple heterogeneous files that are coded with different
parameters and share common storage servers. The main goal
of this paper can be illustrated by an abstracted example shown
in Fig. 1. We consider two files, each partitioned into k = 2
blocks of equal size and encoded using maximum distance
separable (MDS) codes. Under an (n, k) MDS code, a file is
encoded and stored in n storage nodes such that the chunks
stored in any k of these n nodes suffice to recover the entire
file. There is a centralized scheduler that buffers and schedules
all incoming requests. For instance, a request to retrieve file
A can be completed after it is successfully processed by 2
distinct nodes chosen from {1, 2, 3, 4} where desired chunks
of A are available. Due to shared storage nodes and joint
request scheduling, delay performances of the files are highly
correlated and are collectively determined by control variables
of both files over three dimensions: (i) the scheduling policy
that decides what request in the buffer to process when a node
becomes available, (ii) the placement of file chunks over dis-
tributed storage nodes, and (iii) erasure coding parameters that
decides how many chunks are created. A joint optimization
over these three dimensions is very challenging because the
latency performance of different files are tightly entangled.
While increasing erasure code length of file B allows it to be
placed on more storage nodes, potentially leading to smaller
latency (because of improved load-balancing) at the price of
higher storage cost, it inevitably affects service latency of file
A due to resulting contention and interference on more shared
nodes. In this paper, we present a quantification of service
latency for erasure-coded storage with multiple heterogeneous
files and propose an efficient solution to the joint optimization
of both latency and storage cost.
B. Related Work

The effect of coding on content retrieval latency in data-
center storage system is drawing more and more significant at-
tention these days, as Google and Amazon have published that
every 500 ms extra delay means a 1.2% user loss [1]. However,
to our best knowledge quantifying the exact service delay in an
erasure-coded storage system is an open problem, prior works
focusing on asymptotic queuing delay behaviors [42, 43] are
not applicable because redundancy factor in practical data
centers typically remain small due to storage cost concerns.
Due to the lack of analytical latency models for erasure-coded
storage, most of the literature is focused on reliable distributed
storage system design, and latency is only presented as a
performance metric when evaluating the proposed erasure
coding scheme, e.g., [21, 23, 26, 29, 31], which demonstrate
latency improvement due to erasure coding in different system

ar
X

iv
:1

40
4.

49
75

v2
 [

cs
.D

C
]

 5
 A

ug
 2

01
4

2

1
3

2

4

5

Requests

(4,2) coding
1: a1

2: a2

3: a1+a2

4: a1+2a2

(3,2) coding
5: b1

6: b2

7: b1+b2

Scheduler

……

File A
File B

Fig. 1. An erasure-coded storage of 2 files, which partitioned into 2 blocks
and encoded using (4, 2) and (3, 2) MDS codes, respectively. Resulting file
chunks are spread over 7 storage nodes. Any file request must be processed
by 2 distinct nodes that have the desired chunks. Nodes 3, 4 are shared and
can process request for both files.

implementations. Related design can also be found in data
access scheduling [14, 16, 19, 20], access collision avoidance
[17, 18], and encoding/decoding time optimization [32, 33] and
there are also some work using the LT erasure codes to adjust
the system to meet user requirements such as availability,
integrity and confidentiality [6]. Restricting to the special case
of a single file or homogeneous files, service delay bounds of
erasure-coded storage have been recently studied in [40, 45,
49, 50].

Queuing-theoretic analysis. For a single file or multiple but
homogeneous files, under an assumption of exponential service
time distribution, the authors in [5] proved an asymptotic
result for symmetric large-scale systems which can be applied
to provide a computable approximation for expected latency,
however, under a assumption that chunk placement is fixed
and so is coding policy for all requests, which is not the case
in reality. Also, the authors in [40, 45] proposed a block-one-
scheduling policy that only allows the request at the head of
the buffer to move forward. An upper bound on the average
latency of the storage system is provided through queuing-
theoretic analysis for MDS codes with k = 2. Later, the
approach is extended in [49] to general (n, k) erasure codes,
yet for a single file or homogeneous files. A family of MDS-
Reservation(t) scheduling policies that block all except the
first t of file requests are proposed and lead to numerical
upper bounds on the average latency. It is shown that as
t increases, the bound becomes tighter while the number
of states concerned in the queueing-theoretic analysis grows
exponentially.

Fork-join queue analysis. A queuing model closely related
to erasure-coded storage is the fork-join queue [15] which
has been extensively studied in the literature. Recently, in [2],
the authors proposed a heuristic transmission scheme using
this Fork-join queuing model where a file request is forked
to all n storage nodes that host the file chunks, and it exits
the system when any k chunks are processed to dynamically
tuning coding parameters to improve latency performance. In
[4] the authors proposed a self-adaptive strategy which can
dynamically adjusting chunk size and number of redundancy
requests according to dynamic workload status in erasure-
coded storage systems to minimize queuing delay in fork-
join queues. Also the authors in [50] used this (n, k) fork-
join queue to model the latency performance of erasure-

coded storage, a closed-form upper bound of service latency
is derived for the case of a single file or homogeneous
files and exponentially-distributed service time. However, the
approach cannot be applied to a multiple-heterogeneous file
storage where each file has a separate folk-join queue and
the queues of different files are highly dependent due to
shared storage nodes and joint request scheduling. In another
work [3], the authors applied this fork-join queue to optimize
threads allocation to each request, which is similar to our
weighted queue model, however, both proposed greedy/shared
scheme would waste system resources because in fork-join
queue there will always be some threads have unfinished
downloads due to redundant assignment. In addition, in [7], the
authors proposed a distributed storage system which analyzed
through the Fork-join queue framework with heterogeneous
jobs, and provide lower and upper bounds on the average
latency for jobs of different classes under various scheduling
policies, such as First-Come-First-Serve, preemptive and non-
preemptive priority scheduling policies, based on the analysis
of mean and second moment of waiting time. However, under
a folk-join queue, each file request must be served by all n
nodes or a set of pre-specified nodes. It falls short to address
dynamic load-balancing of multiple heterogeneous files.
C. Our Contributions

This paper aims to propose a systematic framework that (i)
quantifies the outer bound on the service latency of arbitrary
erasure codes and for any number of files in distributed data
center storage with general service time distributions, and (ii)
enables a novel solution to a joint minimization of latency and
storage cost by optimizing the system over three dimensions:
erasure coding, chunk placement, and scheduling policy.

The outer bound on the service latency is found using four
steps, (i) We present a novel probabilistic scheduling policy,
which dispatches each file request to k distinct storage nodes
who then manages their own local queues independently. A
file request exits the system when all the k chunk requests
are processed. We show that probabilistic scheduling provides
an upper bound on average latency of erasure-coded storage
for arbitrary erasure codes, any number of files, and general
services time distributions. (ii) Since the latency for prob-
abilistic scheduling for all probabilities over

(
n
k

)
subsets is

hard to evaluate, we show that the probabilistic scheduling
is equivalent to accessing each of the n storage node with
certain probability. If there is a strategy that accesses each
storage node with certain probability, there exist a probabilistic
scheduling strategy over all

(
n
k

)
subsets. (iii) The policy that

selects each storage node with certain probability generates
memoryless requests at each of the node and thus the delay
at each storage node can be characterized by the latency of
M/G/1 queue. (iv) Knowing the exact delay from each storage
node, we find a tight bound on the delay of the file by
extending ordered statistic analysis in [44]. Not only does our
result supersede previous latency analysis [40, 45, 49, 50] by
incorporating multiple heterogeneous files and arbitrary ser-
vice time distribution, it is also shown to be tighter for a wide
range of workloads even in the single-file or homogeneous
files case.

Multiple extensions to the outer bound on the service
latency are considered. The first is the case when multiple
chunks can be placed on the same node. As a result, multiple

3

chunk requests corresponding to the same file request can be
submitted to the same queue, which processes the requests
sequentially and results in dependent chunk service times. The
second is the case when the file can be retrieved from more
than k nodes. In this case, smaller amount of data can be
obtained from more nodes. Obtaining data from more nodes
has an effect of considering worst ordered statistics having
an effect on increasing latency, while the smaller file size
from each of the node helping more parallelization, and thus
decreasing latency. The optimal value of the number of disks
to access can then be optimized.

The main application of our latency analysis is a joint
optimization of latency and storage cost for multiple-
heterogeneous file storage over three dimensions: erasure
coding, chunk placement, and scheduling policy. To the best
of our knowledge, this is the first paper to explore all these
three design degrees of freedoms and to optimize an aggregate
latency-plus-cost objective for all end users in an erasure-
coded storage. Solving such a joint optimization is known
to be hard due to the integer property of storage cost, as
well as the coupling of control variables. While the length
of erasure code determines not only storage cost but also
the number of file chunks to be created and placed, the
placement of file chunks over storage nodes further dictates
the possible options of scheduling future file requests. To deal
with these challenges, we propose an algorithm that constructs
and computes a sequence of local, convex approximations
of the latency-plus-cost minimization that is a mixed integer
optimization. The sequence of approximations parametrized by
β > 0 can be efficiently computed using a standard projected
gradient method and is shown to converge to the original
problem as β →∞.

To validate our theoretical analysis and joint latency-plus-
cost optimization, we provide a prototype of the proposed
algorithm in Tahoe [48], which is an open-source, distributed
filesystem based on the zfec erasure coding library for fault
tolerance. A Tahoe storage system consisting of 12 storage
nodes are deployed as virtual machines in an OpenStack-based
data center environment distributed in New Jersey (NJ), Texas
(TX), and California (CA). Each site has four storage servers.
One additional storage client was deployed in the NJ data
center to issue storage requests. First, we validate our latency
analysis via experiments with multiple-heterogeneous files and
different request arrival rates on the testbed. Our measurement
of real service time distribution falsifies the exponential as-
sumption in [40, 45, 49]. Our analysis outperforms the upper
bound in [50] even in the single-file/homogeneous-file case.
Second, we implement our algorithm for joint latency-plus-
cost minimization and demonstrate significant improvement of
both latency and cost over oblivious design approaches. Our
entire design is validated in various scenarios on our testbed,
including different files sizes and arrival rates. The percentage
improvement increases as the file size increases because our
algorithm reduces queuing delay which is more effective when
file sizes are larger. Finally, we quantify the tradeoff between
latency and storage cost. It is shown that the improved latency
shows a diminished return as storage cost/redundancy increase,
suggesting the importance of identifying a particular tradeoff
point.

II. SYSTEM MODEL
We consider a data center consisting of m heterogeneous

servers, denoted byM = {1, 2, . . . ,m}, called storage nodes.
To distributively store a set of r files, indexed by i = 1, . . . , r,
we partition each file i into ki fixed-size chunks1 and then
encode it using an (ni, ki) MDS erasure code to generate ni
distinct chunks of the same size for file i. The encoded chunks
are assigned to and stored on ni distinct storage nodes, which
leads to a chunk placement subproblem, i.e., to find a set Si
of storage nodes, satisfying Si ⊆ M and ni = |Si|, to store
file i. Therefore, each chunk is placed on a different node
to provide high reliability in the event of node or network
failures. While data locality and network delay have been one
of the key issues studied in data center scheduling algorithms
[19, 20, 22], the prior work does not apply to erasure-coded
systems.

The use of (ni, ki) MDS erasure code allows the file to be
reconstructed from any subset of ki-out-of-ni chunks, whereas
it also introduces a redundancy factor of ni/ki. To model
storage cost, we assume that each storage node j ∈M charges
a constant cost Vj per chunk. Since ki is determined by file
size and the choice of chunk size, we need to choose an
appropriate ni which not only introduces sufficient redundancy
for improving chunk availability, but also achieves a cost-
effective solution. We refer to the problem of choosing ni
to form a proper (ni, ki) erasure code as an erasure coding
subproblem.

For known erasure coding and chunk placement, we shall
now describe a queueing model of the distributed storage
system. We assume that the arrival of client requests for each
file i form an independent Poisson process with a known
rate λi. We consider chunk service time Xj of node j
with arbitrary distributions, whose statistics can be obtained
inferred from existing work on network delay [33, 34] and file-
size distribution [35, 36]. Under MDS codes, each file i can be
retrieved from any ki distinct nodes that store the file chunks.
We model this by treating each file request as a batch of ki
chunk requests, so that a file request is served when all ki
chunk requests in the batch are processed by distinct storage
nodes. All requests are buffered in a common queue of infinite
capacity.

Consider the 2-file storage example in Section I, where files
A and B are encoded using (4, 2) and (3, 2) MDS codes,
respectively, file A will have chunks as A1, A2, A3 and A4,
and file B will have chunks B1, B2 and B3. As depicted in
Fig.2 (a), each file request comes in as a batch of ki = 2 chunk
requests, e.g., (RA,11 , RA,21), (RA,12 , RA,22), and (RB,11 , RB,21),
where RA,ji , denotes the ith request of file A, j = 1, 2 denotes
the first or second chunk request of this file request. Denote
the five nodes (from left to right) as servers 1, 2, 3, 4, and
5, and we initial 4 file requests for file A and 3 file requests
for file B, i.e., requests for the different files have different
arrival rates. The two chunks of one file request can be any two
different chunks from A1, A2, A3 and A4 for file A and B1,
B2 and B3 for file B. Due to chunk placement in the example,
any 2 chunk requests in file A’s batch must be processed by 2

1While we make the assumption of fixed chunk size here to simplify the
problem formulation, all results in this paper can be easily extended to variable
chunk sizes. Nevertheless, fixed chunk sizes are indeed used by many existing
storage systems [21, 23, 25].

4

distinct nodes from {1, 2, 3, 4}, while 2 chunk requests in file
B’s batch must be served by 2 distinct nodes from {3, 4, 5}.
Suppose that the system is now in a state depicted by Fig.2
(a), wherein the chunk requests RA,11 , RA,12 , RA,21 , RB,11 , and
RB,22 are served by the 5 storage nodes, and there are 9 more
chunk requests buffered in the queue. Suppose that node 2
completes serving chunk request RA,12 and is now free to
server another request waiting in the queue. Since node 2 has
already served a chunk request of batch (RA,12 , RA,22) and node
2 does not host any chunk for file B, it is not allowed to serve
either RA,22 or RB,j2 , RB,j3 where j = 1, 2 in the queue. One
of the valid requests, RA,j3 and RA,j4 , will be selected by an
scheduling algorithm and assigned to node 2. We denote the
scheduling policy that minimizes average expected latency in
such a queuing model as optimal scheduling.

Definition 1: (Optimal scheduling) An optimal scheduling
policy (i) buffers all requests in a queue of infinite capacity;
(ii) assigns at most 1 chunk request from a batch to each
appropriate node, and (iii) schedules requests to minimize
average latency if multiple choices are available.

(a) MDS scheduling (b) Probabilistic scheduling

……

Dispatch

A,1

2R

A,1

1R B,1

1R
B,2

1R

A,1

2R

A,2

1R A,1

1R A,2

1R
B,1

1R B,2

1R

A,2

2R
B,1

2R

B,2

2R

B,1

3R B,2

3R

A,1

3R

A,2

3R

A,1

4R A,2

4R

A,2

4R

A,2

2R

A,1

3R

A,1

4R

A,2

3R

B,1

2R

B,1

3R B,2

2R

B,2

3R

Fig. 2. Functioning of (a) an optimal scheduling policy and (b) a probabilistic
scheduling policy.

An exact analysis of optimal scheduling is extremely dif-
ficult. Even for given erasure codes and chunk placement, it
is unclear what scheduling policy leads to minimum average
latency of multiple heterogeneous files. For example, when
a shared storage node becomes free, one could schedule
either the earliest valid request in the queue or the request
with scarcest availability, leading to different implications on
average latency. A scheduling policy similar to [40, 45] that
blocks all but the first t batches does not apply to multiple
heterogeneous files because a Markov-chain representation of
the resulting queue is required to have each state encapsulating
not only the status of each batch in the queue, but also
the exact assignment of chunk requests to storage nodes,
since nodes are shared by multiple files and are no longer
homogeneous. This leads to a Markov chain which has a huge
state space and is hard to quantify analytically even for small
t. On the other hand, the approach relying on (n, k) fork-join
queue in [50] also falls short because each file request must
be forked to ni servers, inevitably causing conflict at shared
servers.

III. UPPER BOUND: PROBABILISTIC
SCHEDULING

This section presents a class of scheduling policies (and
resulting latency analysis), which we call the probabilistic
scheduling, whose average latency upper bounds that of opti-
mal scheduling.

A. Probabilistic scheduling
Under (ni, ki) MDS codes, each file i can be retrieved by

processing a batch of ki chunk requests at distinct nodes that
store the file chunks. Recall that each encoded file i is spread
over ni nodes, denoted by a set Si. Upon the arrival of a file i
request, in probabilistic scheduling we randomly dispatch the
batch of ki chunk requests to ki-out-of-ni storage nodes in Si,
denoted by a subset Ai ⊆ Si (satisfying |Ai| = ki) with pre-
determined probabilities. Then, each storage node manages its
local queue independently and continues processing requests
in order. A file request is completed if all its chunk requests
exit the system. An example of probabilistic scheduling is
depicted in Fig.2 (b), wherein 5 chunk requests are currently
served by the 5 storage nodes, and there are 9 more chunk
requests that are randomly dispatched to and are buffered in
5 local queues according to chunk placement, e.g., requests
B2, B3 are only distributed to nodes {3, 4, 5}. Suppose that
node 2 completes serving chunk request A2. The next request
in the node’s local queue will move forward.

Definition 2: (Probabilistic scheduling) An Probabilistic
scheduling policy (i) dispatches each batch of chunk requests
to appropriate nodes with predetermined probabilities; (ii) each
node buffers requests in a local queue and processes in order.

It is easy to verify that such probabilistic scheduling ensures
that at most 1 chunk request from a batch to each appropriate
node. It provides an upper bound on average service latency
for the optimal scheduling since rebalancing and scheduling
of local queues are not permitted. Let P(Ai) for all Ai ⊆ Si
be the probability of selecting a set of nodes Ai to process
the |Ai| = ki distinct chunk requests2.

Lemma 1: For given erasure codes and chunk placement,
average service latency of probabilistic scheduling with feasi-
ble probabilities {P(Ai) : ∀i,Ai} upper bounds the latency
of optimal scheduling.

Clearly, the tightest upper bound can be obtained by
minimizing average latency of probabilistic scheduling over
all feasible probabilities P(Ai) ∀Ai ⊆ Si and ∀i, which
involves

∑
i(ni-choose-ki) decision variables. We refer to this

optimization as a scheduling subproblem. While it appears
prohibitive computationally, we will demonstrate next that
the optimization can be transformed into an equivalent form,
which only requires

∑
i ni variables. The key idea is to show

that it is sufficient to consider the conditional probability
(denoted by πi,j) of selecting a node j, given that a batch
of ki chunk requests of file i are dispatched. It is easy to see
that for given P(Ai), we can derive πi,j by

πi,j =
∑

Ai:Ai⊆Si

P(Ai) · 1{j∈Ai}, ∀i (1)

where 1{j∈Ai} is an indicator function which equals to 1 if
node j is selected by Ai and 0 otherwise.

Theorem 1: A probabilistic scheduling policy with feasible
probabilities {P(Ai) : ∀i,Ai} exists if and only if there exists
conditional probabilities {πi,j ∈ [0, 1],∀i, j} satisfying

m∑
j=1

πi,j = ki ∀i and πi,j = 0 if j /∈ Si. (2)

2It is easy to see that P(Ai) = 0 for all Ai * Si and |Ai| = ki because
such node selections do not recover ki distinct chunks and thus are inadequate
for successful decode.

5

The proof of Theorem 1 relying on Farkas-Minkowski
Theorem [52] is detailed in the Appendix A. Intuitively,∑m
j=1 πi,j = ki holds because each batch of requests is dis-

patched to exact ki distinct nodes. Moreover, a node does not
host file i chunks should not be selected, meaning that πi,j = 0
if j /∈ Si. Using this result, it is sufficient to study probabilistic
scheduling via conditional probabilities πi,j , which greatly
simplifies our analysis. In particular, it is easy to verify that
under our model, the arrival of chunk requests at node j
form a Poisson Process with rate Λj

∑
i λiπi,j , which is the

superposition of r Poisson processes each with rate λiπi,j .
The resulting queueing system under probabilistic scheduling
is stable if all local queues are stable.

Corollary 1: The queuing system governed can be sta-
bilized by a probabilistic scheduling policy under request
arrival rates λ1, λ2, . . . , λr if there exists {πi,j ∈ [0, 1],∀i, j}
satisfying (30) and

Λj =
∑
i

λiπi,j < µj , ∀j. (3)

B. Latency analysis and upper bound
An exact analysis of the queuing latency of probabilistic

scheduling is still hard because local queues at different
storage nodes are dependent of each other as each batch of
chunk requests are dispatched jointly. Let Qj be the (random)
waiting time a chunk request spends in the queue of node
j. The expected latency of a file i request is determined by
the maximum latency that ki chunk requests experience on
distinct servers, Ai ⊆ Si, which are randomly scheduled with
predetermined probabilities, i.e.,

T̄i = E
[
EAi

(
max
j∈Ai
{Qj}

)]
, (4)

where the first expectation is taken over system queuing
dynamics and the second expectation is taken over random
dispatch decisions Ai.

If the server scheduling decision Ai were deterministic, a
tight upper bound on the expected value of the highest order
statistic can be computed from marginal mean and variance
of these random variables [44], namely E[Qj] and Var[Qj].
Relying on Theorem 1, we first extend this bound to the
case of randomly selected servers with respect to conditional
probabilities {πi,j ∈ [0, 1],∀i, j} to quantify the latency of
probabilistic scheduling.

Lemma 2: The expected latency T̄i of file i under proba-
bilistic scheduling is upper bounded by

T̄i ≤ min
z∈R

z +
∑
j∈Si

πi,j
2

(E[Qj]− z)

+
∑
j∈Si

πi,j
2

[√
(E[Qj]− z)2 + Var[Qj]

] . (5)

The bound is tight in the sense that there exists a distribution
of Qj such that (5) is satisfied with exact equality.

Next, we realize that the arrival of chunk requests at
node j form a Poisson Process with superpositioned rate
Λj =

∑
i λiπi,j . The marginal mean and variance of waiting

time Qj can be derived by analyzing them as separate M/G/1
queues. We denote Xj as the service time per chunk at node

j, which has an arbitrary distribution satisfying finite mean
E[Xj] = 1/µj , variance E[X2]−E[X]2 = σ2

j , second moment
E[X2] = Γ2

j , and third moment E[X3] = Γ̂3
j . These statistics

can be readily inferred from existing work on network delay
[33, 34] and file-size distribution [35, 36].

Lemma 3: Using Pollaczek-Khinchin transform [45], ex-
pected delay and variance for total queueing and network delay
are given by

E[Qj] =
1

µj
+

ΛjΓ
2
j

2(1− ρj)
, (6)

Var[Qj] = σ2
j +

ΛjΓ̂
3
j

3(1− ρj)
+

Λ2
jΓ

4
j

4(1− ρj)2
, (7)

where ρj = Λj/µj is the request intensity at node j.
Combining Lemma 2 and Lemma 3, a tight upper bound on

expected latency of file i under probabilistic scheduling can
be obtained by solving a single-variable minimization problem
over real z ∈ R for given erasure codes ni, chunk placement
Si, and scheduling probabilities πij .

Remark 1: Consider the homogeneous case studied in previous
work [3, 40, 45, 50] where all nodes have the same service time
distribution and where files have the same chunk placement
(i.e., |Si| = ni = m ∀i). It is easy to show that due to symme-
try, the optimal scheduling probabilities πi,j minimizing total
system latency is πi,j = ki/m for all i, j. Therefore, each node
j receives an equal request arrival rate Λj , resulting in equal
mean and variance of waiting time Qj . Using the convexity
of our bound with respect to z, the latency upper bound in (5)
can be derived in closed form:

T̄i ≤ E[Qj] +
√
ki − 1 ·Var[Qj] (8)

where E[Qj] and Var[Qj] are mean and variance of waiting
time Qj given by (6) and (7).

C. Extensions of the Latency Upper Bound

In the above upper bound, we assumed that each file i uses
(ni, ki) MDS code, places exactly one chunk on each selected
node, and is retrieved from ki out of ni nodes on which the
file is placed. In practice, more complicated storage schemes
can be designed to offer a higher degree of elasticity by (i)
placing multiple chunks on selected nodes or (ii) accessing the
file from more than ki nodes in parallel. In this subsection,
we further extend our latency upper bound to address these
cases.
Placing multiple chunks on each node. This case arises when
a group of storage nodes share a single bottleneck (e.g., outgo-
ing bandwidth at a regional datacenter) and must be modeled
by a single queue, or in small clusters the number storage
node is less than that of created file chunks (i.e., ni > m).
As a result, multiple chunk requests corresponding to the
same file request can be submitted to the same queue, which
processes the requests sequentially and results in dependent
chunk service times.

To extend our latency bound, we assume that each node
can host up to c chunks. Thus, our probabilistic scheduling
policy dispatches x chunk requests of file i to node j with pre-
determined probability π̂xi,j for x = 1, . . . , c. Since

∑
x xπ̂

x
i,j

represents the average number of chunks retrieved from node
j, we must have

∑
j

∑
x xπ̂

x
i,j = ki to guarantee access to

6

enough chunks for successful file retrieval. Further, these x
chunk requests join the service queue at the same time and
have dependent service times, given by Qj ,Qj + X1

j ,Qj +
X1
j +X2

j , . . . where Qj is the waiting time of a single chunk
request as before, and X1

j ,X
2
j , . . . are i.i.d. chunk service

times of node j, with mean 1/µj , variance σ2
j , and third

moment Γ̂3
j . Under this model, the latency of each file i can

be characterized by
Lemma 4: The expected latency T̄i of file i is upper

bounded by

T̄i ≤ min
z∈R

z +
∑
j∈Si

c∑
x=1

π̂xi,j
2

(
E[Q̂x

ij]− z
)

+
∑
j∈Si

c∑
x=1

π̂xi,j
2

[√
(E[Q̂x

ij]− z)2 + Var[Q̂x
ij]

] ,(9)

where Q̂x
ij is the waiting time for all x chunk request of file

i submitted together to the queue of node j, with moments
given as follows

E[Q̂x
ij] =

x

µj
+

Λ̂jΓ
′2
j

2(1− ρj)
, (10)

Var[Q̂x
ij] = xσ2

j +
Λ̂jΓ̂

′3
j

3(1− ρj)
+

Λ̂2
jΓ
′4
j

4(1− ρj)2
, (11)

where λ̂j =
∑
i

∑c
x=1 xπ̂

x
i,j is the total request arrival rate at

node j.
The proof is very similar to that of Lemma 1, recognizing

that for all x chunk requests served by the same queue, only
the latency of last request (denoted by Q̂x

j = Qj +X1
j + . . .+

Xx−1
j) has to be considered in the order statistic analysis, since

it strictly dominates the queuing latency of other x−1 requests.
Using the i.i.d. property of service times and updating total
request arrival rate λ̂j =

∑
i

∑
x xπ̂

x
i,j , the proof of Lemma 4

is straightforward.
Retrieving file from more than ki nodes. Let Fi be the
size of file i. We now consider the scenario where files have
different chunk sizes and where each file i can be obtained
from di ≥ ki nodes, requiring only Fi/di amount of data from
each node. The scheme allows a higher degree of parallelism
in file access. Since less content is requested from each node,
it may lead to lower service latency at the cost of accessing
more nodes and more complicated coding strategy.

We first note that file can be retrieved by obtaining Fi/di
amount of data from di ≥ ki nodes with the same placement
and the same (ni, ki) MDS code. To see this, consider that
the content at each node is subdivided into B =

(
di
ki

)
sub-chunks (We assume that each chunk can be perfectly
divided and ignore the effect of non-perfect division). Let
L = {L1, · · · ,LB} be the list of all B combinations of di
servers such that each combination is of size ki. In order to
access the data, we get mth sub-chunks from all the servers
in Lm for all m = 1, 2, · · ·B. Thus, the total size of data
retrieved is of size Fi, which is evenly accessed from all the
di nodes. In order to obtain the data, we have enough data to
decode since ki sub-chunks are available for each m and we
assume a linear MDS code. We further assume that the if the
service time for a chunk is proportional to its size, and thus

if less content is requested from a server, the service time for
that content is proportionally smaller.

Lemma 5: The expected latency T̄i of file i is upper
bounded by

T̄i ≤ min
z∈R

z +
∑
j∈Si

πi,j
2

(
E[Q̃ij]− z

)

+
∑
j∈Si

πi,j
2

[√
(E[Q̃ij]− z)2 + Var[Q̃ij]

] ,(12)

where Q̃ij is the (random) waiting time a chunk request for
file i spends in the queue of node j, with moments given as
follows

E[Q̃ij] =
ki
diµj

+
ΛjΓ

′2
j

2(1− ρj)
, (13)

Var[Q̃ij] =
k2
i

d2
i

σ2
j +

ΛjΓ̂
′3
j

3(1− ρj)
+

Λ2
jΓ
′4
j

4(1− ρj)2
, (14)

where ρj = Λjνj is the request intensity at node j,
Λj =

∑
i λiπi,j , ∀j, 0 ≤ πi,j ≤ 1,

∑m
j=1 πi,j =

di ∀i and πi,j = 0 if j /∈ Si, and ki ≤ di ≤ ni ∀i.
Further, νj =

∑
i

λiπi,j∑
i λiπi,j

ki
diµj

, Γ′2j =
∑
i

λiπi,j∑
i λiπi,j

k2
i

d2
i
Γ2
j , and

Γ̂′3j =
∑
i

λiπi,j∑
i λiπi,j

k3
i

d3
i
Γ̂3
j .

The key step to prove Lemma 5 is to find the mean and
variance of waiting time Q̃ij for chunk requests on node
j. Due to our assumption of proportional processing time,
the service time of a file i request is kiXj/di where Xj

is the service time for a standard chunk size as before.
Chunk requests submitted to node j form a composite Poission
process. Therefore, its service time follows the distribution
of kiXj/di with normalized probabilities πi,j/(

∑
i πi,j) for

i = 1, . . . , r. The rest of the proof is straightforward by
plugging this new service time distribution into the proof of
Lemma 1.

IV. APPLICATION: JOINT LATENCY AND COST
OPTIMIZATION

In this section, we address the following questions: what
is the optimal tradeoff point between latency and storage cost
for a erasure-coded system? While any optimization regarding
exact latency is an open problem, the analytical upper bound
using probabilistic scheduling enables us to formulate a novel
optimization of joint latency and cost objectives. Its solution
not only provides a theoretical bound on the performance of
optimal scheduling, but also leads to implementable schedul-
ing policies that can exploit such tradeoff in practical systems.

A. Formulating the Joint Optimization

We showed that a probabilistic scheduling policy can be
optimization over three sets of control variables: erasure cod-
ing ni, chunk placement Si, and scheduling probabilities πij .
However, a latency optimization without considering storage
cost is impractical and leads to a trivial solution where every
file ends up spreading over all nodes. To formulate a joint
latency and cost optimization, we assume that storing a single
chunk on node j requires cost Vj , reflecting the fact that nodes
may have heterogeneous quality of service and thus storage
prices. Therefore, total storage cost is determined by both the

7

level of redundancy (i.e., erasure code length ni) and chunk
placement Si. Under this model, the cost of storing file i is
given by Ci =

∑
j∈Si Vj . In this paper, we only consider

the storage cost of chunks while network cost would be an
interesting future direction.

Let λ̂ =
∑
i λi be the total arrival rate, so λi/λ̂ is the

fraction of file i requests, and average latency of all files
is given by

∑
i(λi/λ̂)T̄i. Our objective is to minimize an

aggregate latency-cost objective, i.e.,

min

r∑
i=1

λi

λ̂
T̄i + θ

r∑
i=1

∑
j∈S

Vj (15)

s.t. (1), (2), (3), (5), (6), (7).

var. ni, πi,j , Si ∈M, ∀i, j.

Here θ ∈ [0,∞) is a tradeoff factor that determines the relative
importance of latency and cost in the minimization problem.
Varying from θ = 0 to θ → ∞, the optimization solution to
(15) ranges from those minimizing latency to ones that achieve
lowest cost.

The joint latency-cost optimization is carried out over three
sets of variables: erasure code ni, scheduling probabilities πi,j ,
and chunk placement Si, subject to the constraints derived
in Section III. Varying θ, the optimization problem allows
service providers to exploit a latency-cost tradeoff and to
determine the optimal operating point for different application
demands. We plug into (15) the results in Section III and obtain
a Joint Latency-Cost Minimization (JLCM) with respect to
probabilistic scheduling3:

Problem JLCM:

min z +

m∑
j=1

Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
+ θ

r∑
i=1

∑
j∈Si

Vj(16)

s.t. Xj =
1

µj
+

ΛjΓ
2
j

2(1− ρj)
− z, ∀j (17)

Yj = σ2
j +

ΛjΓ̂
3
j

3(1− ρj)
+

Λ2
jΓ

4
j

4(1− ρj)2
, ∀j (18)

ρj = Λj/µj < 1; Λj =

r∑
i=1

πi,jλi ∀j (19)

m∑
j=1

πi,j = ki; πi,j ∈ [0, 1]; πi,j = 0 ∀j /∈ Si (20)

|Si| = ni and Si ⊆M, ∀i (21)
var. z, ni, Si, πi,j , ∀i, j.

Problem JLCM is challenging due to two reasons. First,
all optimization variables are highly coupled, making it hard
to apply any greedy algorithm that iterative optimizes over
different sets of variables. The number of nodes selected for
chunk placement (i.e., Si) is determined by erasure code length
ni in (21), while changing chunk placement Si affects the
feasibility of probabilities πi,j due to (20). Second, Problem
JLCM is a mixed-integer optimization over Si and ni, and
storage cost Ci =

∑
j∈Si Vj depends on the integer variables.

Such a mixed-integer optimization is known to be difficult in
general

3The optimization is relaxed by applying the same axillary variable z to
all T̄i, which still satisfies the inequality (5).

B. Constructing convex approximations
In the next, we develop an algorithmic solution to Problem

JLCM by iteratively constructing and solving a sequence of
convex approximations. This section shows the derivation of
such approximations for any given reference point, while the
algorithm and its convergence will be presented later.

Our first step is to replace chunk placement Si and erasure
coding ni by indicator functions of πi,j . It is easy to see that
any nodes receiving a zero probability πi,j = 0 should be
removed from Si, since any chunks placed on them do not
help reducing latency.

Lemma 6: The optimal chunk placement of Problem JLCM
must satisfy Si = {j : πi,j > 0} ∀i, which implies∑

j∈Si

Vj =

m∑
j=1

Vj1(πi,j>0), ni =

m∑
j=1

Vj1(πi,j>0) (22)

Thus, Problem JLCM becomes to an optimization over only
(πi,j ∀i, j), constrained by

∑m
j=1 πi,j = ki and πi,j ∈ [0, 1]

in (20), with respect to the following objective function:

z +

m∑
j=1

Λj
2λ̄

[
Xj +

√
X2
j + Yj

]
+ θ

r∑
i=1

m∑
j=1

Vj1(πi,j>0). (23)

However, the indicator functions above that are neither contin-
uous nor convex. To deal with them, we select a fixed reference
point (π

(t)
i,j ∀i, j) and leverage a linear approximation of (23)

with in a small neighbourhood of the reference point. For all
i, j, we have

Vj1(πi,j>0) ≈

[
Vj1(π(t)

i,j>0
) +

Vj(πi,j − π(t)
i,j)

(π
(t)
ı,j + 1/β) log β

]
, (24)

where β > 0 is a sufficiently large constant relating to the
approximation ratio. It is easy to see that the approximation ap-
proaches the real cost function within a small neighbourhood
of (π

(t)
i,j ∀i, j) as β increases. More precisely, when π(t)

i,j = 0
the approximation reduces to πi,j(Vjβ/ log β), whose gradient
approaches infinity as β → ∞, whereas the approximation
converges to constant Vj for any π(t)

i,j = 0 as β →∞.
It is easy to verify that the approximation is linear and

differentiable. Therefore, we could iteratively construct and
solve a sequence of approximated version of Problem JLCM.
Next, we show that the rest of optimization objective in (16)
is convex in πi,j when all other variables are fixed.

Lemma 7: The following function, in which Xj and Yj are
functions of Λj defined by (17) and (18), is convex in Λj :

F (Λj) =
Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
. (25)

C. Algorithm JLCM and convergence analysis
Leveraging the linear local approximation in (24) our idea

to solve Problem JLCM is to start with an initial (π
(0)
i,j ∀i, j),

solve its optimal solution, and iteratively improve the ap-
proximation by replacing the reference point with an optimal
solution computed from the previous step. Lemma 7 shows
that such approximations of Problem JLCM are convex and
can be solved by off-the-shelf optimization tools, e.g., Gradient
Descent Method and Interior Point Method [46].

The proposed algorithm is shown in Figure IV-A. For each
iteration t, we solve an approximated version of Problem

8

Algorithm JLCM :

Choose sufficiently large β > 0

Initialize t = 0 and feasible (π
(0)
i,j ∀i, j)

Compute current objective value B(0)

while B(0) −B(1) > ε

Approximate cost function using (24) and (π
(t)
i,j ∀i, j)

Call projected gradient() to solve optimization (26)
(π

(t+1)
i,j ∀i, j) = arg min (26)

z = arg min (26)
Compute new objective value B(t+1)

Update t = t+ 1
end while
Find chunk placement Si and erasure code ni by (22)
Output: (ni,Si, π

(t)
i,j) ∀i, j

Fig. 3. Algorithm JLCM: Our proposed algorithm for solving Problem
JLCM.

Routine projected gradient() :

Choose proper stepsize δ1, δ2, δ3, . . .
Initialize s = 0 and π(s)

i,j = π
(t)
i,j

while
∑

i,j |π
(s+1)
i,j − π(s)

i,j | > ε

Calculate gradient ∇(24) with respect to π(s)
i,j

π
(s+1)
i,j = π

(s)
i,j + δs · ∇(24)

Project π(s+1)
i,j onto feasibility set:

{π(s+1)
i,j :

∑
j π

s+1
i,j = ki, π

s+1
i,j ∈ [0, 1], ∀i, j}

Update s = s+ 1
end while
Output: (π

(s)
i,j , ∀i, j)

Fig. 4. Projected Gradient Descent Routine, used in each iteration of
Algorithm JLCM.

JLCM over (π
(0)
i,j ∀i, j) with respect to a given reference point

and a fixed parameter z. More precisely, for t = 1, 2, . . . we
solve

min θ

r∑
i=1

m∑
j=1

[
Vj1(π(t)

i,j>0
) +

Vj(πi,j − π(t)
i,j)

(π
(t)
ı,j + 1/β) log β

]

+z +

m∑
j=1

Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
(26)

s.t. Constraints (17), (18), (19)
m∑
j=1

πi,j = ki and πi,j ∈ [0, 1]

var. πi,j ∀i, j.

Due to Lemma 7, the above minimization problem with respect
to a given reference point has a convex objective function and
linear constraints. It is solved by a projected gradient descent
routine in Figure IV-A. Notice that the updated probabilities
(π

(t)
i,j ∀i, j) in each step are projected onto the feasibility

set {
∑
j πi,j = ki, πi,j ∈ [0, 1], ∀i, j} as required by

Problem JLCM using a standard Euclidean projection. It is
shown that such a projected gradient descent method solves the
optimal solution of Problem (26). Next, for fixed probabilities
(π

(t)
i,j ∀i, j), we improve our analytical latency bound by

minimizing it over z ∈ R. The convergence of our proposed
algorithm is proven in the following theorem.

Theorem 2: Algorithm JLCM generates a descent sequence
of feasible points, π(t)

i,j for t = 0, 1, . . ., which converges
to a local optimal solution of Problem JLCM as β grows
sufficiently large.
Remark: To prove Theorem 2, we show that Algorithm
JLCM generates a series of decreasing objective values z +∑
j F (Λj) + θĈ of Problem JLCM with a modified cost

function:

Ĉ =

r∑
i=1

m∑
j=1

Vj
log(βπi,j + 1)

log β
. (27)

The key idea in our proof is that the linear approximation of
storage cost function in (24) can be seen as a sub-gradient of
Vj log(βπi,j + 1)/log β, which converges to the real storage
cost function as β →∞, i.e.,

lim
β→∞

Vj
log(βπi,j + 1)

log β
= Vj1(πi,j>0). (28)

Therefore, a converging sequence for the modified objective
z +

∑
j F (Λj) + θĈ also minimizes Problem JLCM, and

the optimization gap becomes zero as β → ∞. Further, it
is shown that ĥ is a concave function. Thus, minimizing
z+
∑
j F (Λj)+θĥ can be viewed as optimizing the difference

between 2 convex objectives, namely z+
∑
j F (Λj) and −θĥ,

which can be also solved via a Difference-of-Convex Program-
ming (DCP). In this context, our linear approximation of cost
function in (24) can be viewed as an approximated supper-
gradient in DCP. Please refer to [47] for a comprehensive
study of regularization techniques in DCP to speed up the
convergence of Algorithm JLCM.

V. IMPLEMENTATION AND EVALUATION
A. Tahoe Testbed

To validate our proposed algorithms for joint latency and
cost optimization (i.e., Algorithm JLCM) and evaluate their
performance, we implemented the algorithms in Tahoe [48],
which is an open-source, distributed filesystem based on the
zfec erasure coding library. It provides three special instances
of a generic node: (a) Tahoe Introducer: it keeps track of a
collection of storage servers and clients and introduces them
to each other. (b) Tahoe Storage Server: it exposes attached
storage to external clients and stores erasure-coded shares.
(c) Tahoe Client: it processes upload/download requests and
connects to storage servers through a Web-based REST API
and the Tahoe-LAFS (Least-Authority File System) storage
protocol over SSL.

Fig. 5. Our Tahoe testbed with average ping (RTT) and bandwidth
measurements among three data centers in New Jersey, Texas, and California

Our algorithm requires customized erasure code, chunk
placement, and server selection algorithms. While Tahoe uses
a default (10, 3) erasure code, it supports arbitrary erasure

9

code specification statically through a configuration file. In
Tahoe, each file is encrypted, and is then broken into a set
of segments, where each segment consists of k blocks. Each
segment is then erasure-coded to produce n blocks (using a
(n, k) encoding scheme) and then distributed to (ideally) n
distinct storage servers. The set of blocks on each storage
server constitute a chunk. Thus, the file equivalently consists
of k chunks which are encoded into n chunks and each chunk
consists of multiple blocks4. For chunk placement, the Tahoe
client randomly selects a set of available storage servers with
enough storage space to store n chunks. For server selection
during file retrievals, the client first asks all known servers for
the storage chunks they might have. Once it knows where to
find the needed k chunks (from the k servers that responds
the fastest), it downloads at least the first segment from those
servers. This means that it tends to download chunks from the
“fastest” servers purely based on round-trip times (RTT). In
our proposed JLCM algorithm, we consider RTT plus expected
queuing delay and transfer delay as a measure of latency.

In our experiment, we modified the upload and download
modules in the Tahoe storage server and client to allow for
customized and explicit server selection, which is specified
in the configuration file that is read by the client when it
starts. In addition, Tahoe performance suffers from its single-
threaded design on the client side for which we had to use
multiple clients with separate ports to improve parallelism and
bandwidth usage during our experiments.

We deployed 12 Tahoe storage servers as virtual machines
in an OpenStack-based data center environment distributed in
New Jersey (NJ), Texas (TX), and California (CA). Each site
has four storage servers. One additional storage client was
deployed in the NJ data center to issue storage requests. The
deployment is shown in Figure 5 with average ping (round-
trip time) and bandwidth measurements listed among the three
data centers. We note that while the distance between CA and
NJ is greater than that of TX and NJ, the maximum bandwidth
is higher in the former case. The RTT time measured by
ping does not necessarily correlate to the bandwidth number.
Further, the current implementation of Tahoe does not use up
the maximum available bandwidth, even with our multi-port
revision.
B. Experiments and Evaluation

Validate our latency analysis. While our service delay
bound applies to arbitrary distribution and works for systems
hosting any number of files, we first run an experiment to
understand actual service time distribution on our testbed. We
upload a 50MB file using a (7, 4) erasure code and measure
the chunk service time. Figure 6 depicts the Cumulative
Distribution Function (CDF) of the chunk service time. Using
the measured results, we get the mean service time of 13.9
seconds with a standard deviation of 4.3 seconds, second
moment of 211.8 s2 and the third moment of 3476.8 s3. We
compare the distribution to the exponential distribution(with
the same mean and the same variance, respectively) and note
that the two do not match. It verifies that actual service time
does not follow an exponential distribution, and therefore, the

4If there are not enough servers, Tahoe will store multiple chunks on one
sever. Also, the term “chunk” we used in this paper is equivalent to the
term “share” in Tahoe terminology. The number of blocks in each chunk is
equivalent to the number of segments in each file.

assumption of exponential service time in [40, 45] is falsified
by empirical data. The observation is also evident because
a distribution never has positive probability for very small
service time. Further, the mean and the standard deviation are
very different from each other and cannot be matched by any
exponential distribution.

Using the service time distribution obtained above, we
compare the upper bound on latency that we propose in this
paper with the outer bound in [50]. Even though our upper
bound holds for multiple heterogeneous files, and includes
connection delay, we restrict our comparison to the case for a
single file/homogeneous-file(multiple homogeneous files with
exactly the same properties can be reduced to the case of single
file) without any connection delay for a fair comparison (since
the upper bound in [50] only works for the case of a single
file/homogeneous files). We plot the latency upper bound that
we give in this paper and the upper bound in [Theorem 3, [50]]
in Figure 7. In our probabilistic scheduling, access requests
are dispatched uniformly to all storage nodes. We find that
our bound significantly outperforms the upper bound in [50]
for a wide range of 1/λ < 32, which represents medium to
high traffic regime. In particular, our bound works fine in high
traffic regime with 1/λ < 18, whereas the upper bound in [50]
goes to infinity and thus fail to offer any useful information.
Under low traffic, the two bounds get very close to each other
with a less than 4% gap.

Validate Algorithm JLCM and joint optimization. We
implemented Algorithm JLCM and used MOSEK [51], a
commercial optimization solver, to realize the projected gra-
dient routine. For 12 distributed storage nodes in our testbed,
Figure 8 demonstrates the convergence of Algorithm JLCM,
which optimizes latency-plus-cost over three dimensions: era-
sure code length ni, chunk placement Si, and load balancing
πi,j . Convergence of Algorithm JLCM is guaranteed by The-
orem 2. To speed up its calculation, in this experiment we
merge different updates, including the linear approximation,
the latency bound minimization, and the projected gradient
update, into one single loop. By performing these updates on
the same time-scale, our Algorithm JLCM efficiently solves
the joint optimization of problem size r = 1000 files. It is
observed that the normalized objective (i.e., latency-plus-cost
normalized by the minimum) converges within 250 iterations
for a tolerance ε = 0.01. To achieve dynamic file management,
our optimization algorithm can be executed repeatedly upon
file arrivals and departures.

To demonstrate the joint latency-plus-cost optimization of
Algorithm JLCM, we compare its solution with three oblivious
schemes, each of which minimize latency-plus-cost over only
a subset of the 3 dimensions: load-balancing (LB), chunk
placement (CP), and erasure code (EC). We run Algorithm
JLCM for r = 1000 files of size 150MB on our testbed,
with Vj = $1 for every 25MB storage and a tradeoff factor
of θ = 200 sec/dollar. The result is shown in Figure. 9.
First, even with the optimal erasure code and chunk place-
ment (which means the same storage cost as the optimal
solution from Algorithm JLCM), higher latency is observed
in Oblivious LB, which schedules chunk requests according
to a load-balancing heuristic that selects storage nodes with
probabilities proportional to their service rates. Second, we
keep optimal erasure codes and employ a random chunk

10

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency (sec)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

Service Time Distribution
Exponential Distribution with same Mean
Exponential Distribution with same Variance

Fig. 6. Comparison of actual service time distribution and an exponential
distribution with the same mean. It verifies that actual service time does
not follow an exponential distribution, falsifying the assumption in previous
work [40, 45].

10 15 20 25 30 35 40
0

50

100

150

1/λ

L
at

en
cy

 (
se

c)

Our Upper Bound
Upper Bound of [42]

Fig. 7. Comparison of our latency upper bound with previous work [50].
Our bound significantly improves previous result under medium to high
traffic and comes very close to that of [50] under low traffic (with less
than 4% gap).

0 50 100 150 200 250
0

500

1000

1500

2000

Number of Iterations

No
ma

liz
ed

 O
bje

cti
ve

Fig. 8. Convergence of Algorithm JLCM for different problem size with
r = 1000 files for our 12-node testbed. The algorithm efficiently computes
a solution in less than 250 iterations.

Algorithm
JLCM

Oblivious LB
Optimal CP,EC

Random CP
Optimal EC

Maximum EC
0

2

4

6

8

10

12

14

16

18

20

0

100

200

300

400

500

600

700

800

900

1000

St
o

ra
ge

 C
o

st

La
te

n
cy

 C
o

st

Latency Cost Storage Cost

Fig. 9. Comparison of Algorithm JLCM with some oblivious approaches.
Algorithm JLCM minimizes latency-plus-cost over 3 dimensions: load-
balancing (LB), chunk placement (CP), and erasure code (EC), while any
optimizations over a subset of the dimensions is non-optimal.

placement algorithm, referred to as Random CP, which adopts
the best outcome of 100 random runs. Large latency increment
resulted by Random CP highlights the importance of joint
chunk placement and load balancing in reducing service
latency. Finally, Maximum EC uses maximum possible erasure
code n = m and selects all nodes for chunk placement.
Although its latency is comparable to the optimal solution
from Algorithm JLCM, higher storage cost is observed. We
verify that minimum latency-plus-cost can only be achieved
by jointly optimizing over all 3 dimensions.

Evaluate the performance of our solution. First, we
choose r = 1000 files of size 150MB and the same storage
cost and tradeoff factor as in the previous experiment. Request
arrival rates are set to λi = 1.25/(10000sec), for i =
1, 4, 7, · · · 997, λi = 1.25/(10000sec), for i = 2, 5, 8, · · · 998
and λi = 1.25/(12000sec), for i = 3, 6, 9, · · · 999, 1000
respectively, which leads to an aggregate file request arrival
rate of λ = 0.118 /sec. We obtain the service time statistics
(including mean, variance, second and third moment) at all
storage nodes and run Algorithm JLCM to generate an opti-
mal latency-plus-cost solution, which results in four different
sets of optimal erasure code (11,6), (10,7), (10,6) and (9,4)
for each quarter of the 1000 files respectively, as well as

associated chunk placement and load-balancing probabilities.
Implementing this solution on our testbed, we retrieve the 1000
files at the designated request arrival rate and plot the CDF
of download latency for each file in Figure 10. We note that
95% of download requests for files with erasure code (10,7)
complete within 100 seconds, while the same percentage of
requests for files using (11,6) erasure code complete within 32
seconds due to higher level of redundancy. In this experiment
erasure code (10,6) outperforms (8,4) in latency though they
have the same level of redundancy because the latter has larger
chunk size when file size are set to be the same.

To demonstrate the effectiveness of our joint optimization,
we vary file size in the experiment from 50MB to 200MB
and plot the average download latency of the 1000 individual
files, out of which each quarter is using a distinct erasure
code (11,6), (10,7), (10,6) and (9,4), and our analytical latency
upper bound in Figure 11 . We see that latency increases super-
linearly as file size grows, since it generates higher load on
the storage system, causing larger queuing latency (which is
super-linear according to our analysis). Further, smaller files
always have lower latency because it is less costly to achieve
higher redundancy for these files. We also observe that our
analytical latency bound tightly follows actual average service

11

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Latency(Sec)

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

 F
u
n

ct
io

n
Empirical CDF

(11,6)

(10,7)

(10,6)

(8,4)

Fig. 10. Actual service latency distribution of an optimal solution from
Algorithm JLCM for 1000 files of size 150MB using erasure code (11,6),
(10,7), (10,6) and (8,4) for each quarter with aggregate request arrival rates
are set to λi = 0.118 /sec

0

20

40

60

80

100

120

140

50M 100M 150M 200M

La
te

n
cy

 (
se

c)

File Size(MB)

(11,6) (10,7) (10,6) (8,4) Average Latency Analytical Bound

Fig. 11. Evaluation of different chunk sizes. Latency increases super-
linearly as file size grows due to queuing delay. Our analytical latency
bound taking both network and queuing delay into account tightly follows
actual service latency.

6

7

8

9

10

11

12

13

0

50

100

150

200

250

r=0.125 r=0.12 r=0.115 r=0.11 r=0.1

St
o

ra
ge

 C
o

st
 P

e
r

U
se

r
(U

S
D

o
lla

rs
)

A
ve

ra
ge

 L
at

e
n

cy
 (

Se
c)

Request Arrival Rate (/Sec)

Average Latency Analytical Bound Storage Cost

Fig. 12. Evaluation of different request arrival rates. As arrival rates
increase, latency increases and becomes more dominating in the latency-
plus-cost objective than storage cost. The optimal solution from Algorithm
JLCM allows higher storage cost, resulting in a nearly-linear growth of
average latency.

100

105

110

115

120

125

130

135

140

6.667 8.002 9.001 9.75 12

La
te

n
cy

 (
Se

c)

Average Storage Cost Per User (US Dollar)

Average Latency Analytical Bound

Fig. 13. Visualization of latency and cost tradeoff for varying θ = 0.5
second/dollar to θ = 200 second/dollar. As θ increases, higher weight is
placed on the storage cost component of the latency-plus-cost objective,
leading to less file chunks and higher latency.

latency.

Next, we varied aggregate file request arrival rate from
λi = 0.125 /sec to λi = 0.1 /sec (with individual arrival
rates also varies accordingly), while keeping tradeoff factor
at θ = 2 sec/dollar and file size at 200MB. Actual service
delay and our analytical bound for each scenario is shown
by a bar plot in Figure 12 and associated storage cost by a
curve plot. Our analytical bound provides a close estimate of
service latency. As arrival rates increase, latency increases and
becomes more dominating in the latency-plus-cost objective
than storage cost. Thus, the marginal benefit of adding more
chunks (i.e., redundancy) eventually outweighs higher storage
cost introduced at the same time. Figure 12 shows that to
achieve a minimization of the latency-plus-cost objective, the
optimal solution from Algorithm JLCM allows higher storage
cost for larger arrival rates, resulting in a nearly-linear growth
of average latency as the request arrival rates increase. For
instance, Algorithm JLCM chooses (12,6), (12,7), (11,6) and
(11,4) erasure codes at the largest arrival rates, while (10,6),
(10,7), (8,6) and (8,4) codes are selected at the smallest
arrival rates in this experiment. We believe that this ability
to autonomously manage latency and storage cost for latency-
plus-cost minimization under different workload is crucial for

practical distributed storage systems relying on erasure coding.

Visualize latency and cost tradeoff. Finally, we demon-
strate the tradeoff between latency and storage cost in our
joint optimization framework. Varying the tradeoff factor in
Algorithm JLCM from θ = 0.5 sec/dollar to θ = 200
sec/dollar for fixed file size of 200MB and aggregate arrival
rates λi = 0.125 /sec, we obtain a sequence of solutions,
minimizing different latency-plus-cost objectives. As θ in-
creases, higher weight is placed on the storage cost component
of the latency-plus-cost objective, leading to less file chunks
in the storage system and higher latency. This tradeoff is
visualized in Figure 13. When θ = 0.5, the optimal solution
from Algorithm JLCM chooses three sets of erasure codes
(12,6), (12,7), and (12,4) erasure codes, which is the maximum
erasure code length in our framework and leads to highest
storage cost (i.e., 12 dollars for each user), yet lowest latency
(i.e., 110 sec). On the other hand, θ = 200 results in the
choice of (6,6), (8,7), and (6,4) erasure code, which is almost
the minimum possible cost for storing the three file, with the
highest latency of 128 seconds. Further, the theoretical tradeoff
calculated by our analytical bound and Algorithm JLCM is
very close to the actual measurement on our testbed. To the
best our our knowledge, this is the first work proposing a joint

12

optimization algorithm to exploit such tradeoff in an erasure-
coded, distributed storage system.

VI. CONCLUSIONS
Relying on a novel probabilistic scheduling policy, this

paper develops an analytical upper bound on average ser-
vice delay of erasure-coded storage with arbitrary number of
files and any service time distribution. A joint latency and
cost minimization is formulated by collectively optimizing
over erasure code, chunk placement, and scheduling policy.
The minimization is solved using an efficient algorithm with
proven convergence. Even though only local optimality can be
guaranteed due to the non-convex nature of the mixed-integer
optimization problem, the proposed algorithm significantly
reduces a latency-plus-cost objective. Both our theoretical
analysis and algorithm design are validated via a prototype in
Tahoe, an open-source, distributed file system. Several practi-
cal design issues in erasure-coded, distributed storage, such as
incorporating network latency and dynamic data management
have been ignored in this paper and open up avenues for future
work.

REFERENCES

[1] E. Schurman and J. Brutlag, “ The user and business impact of server
delays, additional bytes and http chunking in web search,” OReilly
Velocity Web performance and operations conference, June 2009.

[2] G. Liang and U. Kozat, “ Fast Cloud:Pushing the Envelope on
Delay Performance of Cloud Storage with Coding,” IEEE/ACM Trans.
Networking, Nov 2013.

[3] S. Chen, Y. Sun, U.C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu and
N.B. Shroff, “ When Queuing Meets Coding: Optimal-Latency Data
Retrieving Scheme in Storage Clouds,” IEEE Infocom, April 2014.

[4] G. Liang and U.C. Kozat, “TOFEC: Achieving Optimal Throughput-
Delay Trade-off of Cloud Storage Using Erasure Codes,” IEEE Info-
com, April 2014.

[5] V. Shah and G. Veciana, “Performance Evaluation and Asymptotics for
Content Delivery Networks,” IEEE Infocom, April 2014.

[6] C. Angllano, R. Gaeta and M. Grangetto, “Exploiting Rateless Codes
in Cloud Storage Systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, Pre-print 2014.

[7] A. Kumar, R. Tandon and T.C. Clancy, “On the Latency of Erasure-
Coded Cloud Storage Systems,” arXiv:1405.2833, May 2014.

[8] A.D. Luca and M. Bhide, “Storage virtualization for dummies, Hitachi
Data Systems Edition,” John and Wiley Publishing, 2009.

[9] Amazon S3, “Amazon Simple Storage Service,” available online at
http://aws.amazon.com/s3/.

[10] Sathiamoorthy, Maheswaran, et al. “Xoring elephants: Novel erasure
codes for big data.” Proceedings of the 39th international conference
on Very Large Data Bases. VLDB Endowment, 2013.

[11] Fikes, Andrew. “Storage architecture and challenges.” Talk at the
Google Faculty Summit,available online at http://bit.ly/nUylRW, 2010.

[12] M. K. Aquilera, HP Labs., P. Alto, R. Janakirama and L. Xu,
“Using erasure codes efficiently for storage in a distributed system,”
Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference, 2005.

[13] A. G. Dimakis, K. Ramchandran, Y. Wu, C. Suh, “A Survey on Network
Codes for Distributed Storage,” arXiv:1004.4438, Apr. 2010

[14] A. Fallahi and E. Hossain, “Distributed and energy-Aware MAC for
differentiated services wireless packet networks: a general queuing
analytical framework,” IEEE CS, CASS, ComSoc, IES, SPS, 2007.

[15] F.Baccelli, A.Makowski, and A.Shwartz, “The fork-join queue and
related systems with synchronization constraints: stochastic ordering
and computable bounds, Advances in Applied Probability, pp. 629660,
1989.

[16] A.S. Alfa, “Matrix-geometric solution of discrete time MAP/PH/1
priority queue,” Naval research logistics, vol. 45, 00. 23-50, 1998.

[17] J.H. Kim and J.K. Lee, “Performance of carrier sense multiple access
with collision avoidance in wireless LANs,” Proc. IEEE IPDS., 1998.

[18] E. Ziouva and T. Antoankopoulos, “CSMA/CA Performance under high
traffic conditions: throughput and delay analysis,” Computer Comm,
vol. 25, pp. 313-321, 2002.

[19] N.E. Taylor and Z.G. Ives, “Reliable storage and querying for collab-
orative data sharing systems,” IEEE ICED Conference, 2010.

[20] R. Rosemark and W.C. Lee, “Decentralizing query processing in sensor
networks,” Proceedings of the second MobiQuitous: networking and
services, 2005

[21] Dimakis, Alexandros D G , “Distributed data storage in sensor networks
using decentralized erasure codes,” Signals, Systems and Computers,
2004. Conference Record of the Thirty-Eighth Asilomar., 2004.

[22] R. Rojas-Cessa, L. Cai and T. Kijkanjanarat, “Scheduling memory
access on a distributed cloud storage network,” IEEE 21st annual
WOCC, 2012.

[23] M.K. Aguilera, R. Janakiraman, L. Xu, “Using Erasure Codes Effi-
ciently for Storage in a Distributed System,” Proceedings of the 2005
International Conference on DSN, pp. 336-345, 2005.

[24] S. Chen, K.R. Joshi and M.A. Hiltunem, “Link Gradients: Predicting
the Impact of Network Latency on Multi-Tier Applications,” Proc.
IEEE INFOCOM, 2009.

[25] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” Proceedings of the 16th ICS,
2002.

[26] H. Kameyam and Y. Sato, “Erasure Codes with Small Overhead Factor
and Their Distributed Storage Applications,” CISS ’07. 41st Annual
Conference, 2007.

[27] H.Y. Lin, and W.G. Tzeng, “A Secure Decentralized Erasure Code
for Distributed Networked Storage,” Parallel and Distributed Systems,
IEEE Transactions, 2010.

[28] W. Luo, Y. Wang and Z. Shen, “On the impact of erasure coding
parameters to the reliability of distributed brick storage systems,”
Cyber-Enabled Distributed Computing and Knowledge Discovery, In-
ternational Conference, 2009.

[29] J. Li, “Adaptive Erasure Resilient Coding in Distributed Storage,”
Multimedia and Expo, 2006 IEEE International Conference, 2006.

[30] K. V. Rashmi, N. Shah, and V. Kumar, “Enabling node repair in any
erasure code for distributed storage,” Proceedings of IEEE ISIT, 2011.

[31] X. Wang, Z. Xiao, J. Han and C. Han, “Reliable Multicast Based
on Erasure Resilient Codes over InfiniBand,” Communications and
Networking in China, First International Conference, 2006.

[32] S. Mochan and L. Xu, “Quantifying Benefit and Cost of Erasure
Code based File Systems.” Technical report available at http :
//nisl.wayne.edu/Papers/Tech/cbefs.pdf , 2010.

[33] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs. Repli-
cation: A Quantitative Comparison.” In Proceedings of the First
IPTPS,2002

[34] A. Abdelkefi and J. Yuming, “A Structural Analysis of Network Delay,”
Ninth Annual CNSR, 2011.

[35] A.B. Downey, “The structural cause of file size distributions,” Proceed-
ings of Ninth International Symposium on MASCOTS, 2011.

[36] F. Paganini, A. Tang, A. Ferragut and L.L.H. Andrew, “Network
Stability Under Alpha Fair Bandwidth Allocation With General File
Size Distribution,” IEEE Transactions on Automatic Control, 2012.

[37] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong and
S. Sankar, “Row-diagonal parity for double disk failure correction,” In
Proceedings of the 3rd USENIX FAST’, pp. 1-14, 2004.

[38] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al., “ Windows
azure storage: A highly available cloud storage service with strong
consistency,” In Proceedings of the Twenty-Third ACM SOSP, pages
143–157, 2011.

[39] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing I/O for recovery and
degraded reads,” In Proceedings of FAST, 2012.

[40] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can
reduce queueing delay in data centers,” in Proc. IEEE ISIT, 2012.

[41] G. Ananthanarayanan, S. Agarwal, S. Kandula, A Greenberg, and I.
Stoica, “Scarlett: Coping with skewed content popularity in MapRe-
duce,” Proceedings of ACM EuroSys, 2011.

[42] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing
with general service time distributions,” Proceedings of ACM Sigmet-
rics, 2010.

[43] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg,
“Joinidle-queue: A novel load balancing algorithm for dynamically
scalable web services,” 29th IFIPPERFORMANCE, 2010.

[44] D. Bertsimas and K. Natarajan, “Tight bounds on Expected Order
Statistics,” Probability in the Engineering and Informational Sciences,
2006.

[45] L. Huang, S. Pawar, H. Zhang and K. Ramchandran, “Codes Can
Reduce Queueing Delay in Data Centers,” Journals CORR, vol.
1202.1359, 2012.

[46] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, 2005.

[47] L.T. Hoai An and P.D. Tao,“The DC (Difference of Convex Functions)
Programming and DCA Revisited with DC Models of Real World Non-
convex Optimization Problems,” Annals of Operations Research, vol.
133, Issue 1-4, pp. 23-46, Jan 2005.

13

[48] B. Warner, Z. Wilcox-O’Hearn and R. Kinninmont, “Tahoe-LAFS
docs,” available online at https://tahoe-lafs.org/trac/tahoe-lafs.

[49] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: an-
alyzing latency performance of codes and redundant requests,”
arXiv:1211.5405, Nov. 2012.

[50] G. Joshi, Y. Liu, and E. Soljanin, “On the Delay-Storage Trade-
off in Content Download from Coded Distributed Storage Systems,”
arXiv:1305.3945v1, May 2013.

[51] MOSEK, “MOSEK: High performance software for large-scale LP, QP,
SOCP, SDP and MIP,” available online at http://www.mosek.com/.

[52] T. Angell, “The Farkas-Minkowski Theorem”. Lecture nodes available
online at www.math.udel.edu/∼angell/Opt/farkas.pdf, 2002.

APPENDIX
A. Proof of Theorem 1

We first prove that the conditions
∑m
j=1 πi,j = ki ∀i and

πi,j ∈ [0, 1] are necessary. πi,j ∈ [0, 1] for all i, j is obvious
due to its definition. Then, it is easy to show that

m∑
j=1

πi,j =

m∑
j=1

∑
Ai⊆Si,j∈Ai

P(Ai)

=
∑
Ai⊆Si

∑
j∈Ai

P(Ai)

=
∑
Ai⊆Si

kiP(Ai) = ki (29)

where the first step is due to (1), the second step changes the
order of summation, the last step uses the fact that each set
Ai contain exactly ki nodes and that

∑
Ai⊆Si P(Ai) = 1.

Next, we prove that for any set of πi,1, . . . , πi,m (i.e., node
selection probabilities of file i) satisfying

∑m
j=1 πi,j = ki and

πi,j ∈ [0, 1], there exists a probabilistic scheduling scheme
with feasible load balancing probabilities P(Ai) ∀Ai ⊆ Si
to achieve the same node selection probabilities. We start by
constructing Si = {j : πi,j > 0}, which is a set containing
at least ki nodes, because there must be at least ki positive
probabilities πi,j to satisfy

∑m
j=1 πi,j = ki. Then, we choose

erasure code length ni = |Si| and place chunks on nodes in Si.
From (1), we only need to show that when

∑
j∈Si πi,j = ki

and πi,j ∈ [0, 1], the following system of ni linear equations
have a feasible solution P(Ai) ∀Ai ⊆ Si:∑

Ai⊆Si

1{j∈Ai} · P(Ai) = πi,j , ∀j ∈ Si (30)

where 1{j∈Ai} is an indicator function, which is 1 if j ∈ Ai,
and 0 otherwise. We will make use of the following lemma.

Lemma 8: Farkas-Minkowski Theorem [52]. Let A be an
m × n matrix with real entries, and x ∈ Rn and b ∈ Rm be
2 vectors. A necessary and sufficient condition that A · x =
b, x ≥ 0 has a solution is that, for all y ∈ Rm with the
property that AT · y ≥ 0, we have 〈y,b〉 ≥ 0.

We prove the desired result using mathematical induction.
It is easy to show that the statement holds for ni = ki. In this
case, we have a unique solution Ai = Si and P(Ai) = πi,j =
1 for the system of linear equations (30), because all chunks
must be selected to recover file i. Now assume that the system
of linear equations (30) has a feasible solution for some ni ≥
ki. Consider the case with arbitrary |Si + {h}| = ni + 1 and
πi,h+

∑
j∈Si πi,j = ki. We have a system of linear equations:∑

Ai⊆Si+{h}

1{j∈Ai} · P(Ai) = πi,j , ∀j ∈ Si + {h} (31)

Using the Farkas-Minkowski Theorem [52], a sufficient and
necessary condition that (31) has a non-negative solution is
that, for any y1, . . . , ym and

∑
j yjπi,j < 0, we have∑

j∈Si+{h}

yj1{j∈Ai} < 0 for some Ai ⊆ Si + {h}. (32)

Toward this end, we construct π̂i,j = πi,j + [u− πi,j]+ for
all j ∈ Si. Here [x]+ = max(x, 0) is a truncating function
and u is a proper water-filling level satisfying∑

j∈Si

[u− πi,j]+ = πi,h. (33)

It is easy to show that
∑
j∈Si π̂i,j = πi,h +

∑
j∈Si πi,j =

ki and π̂i,j ∈ [0, 1], because π̂i,j = max(u, πi,j) ∈ [0, 1].
Here we used the fact that u < 1 since ki =

∑
j∈Si π̂i,j ≥∑

j∈Si u ≥ kiu. Therefore, the system of linear equations
in (30) with π̂i,j on the right hand side must have a non-
negative solution due to our induction assumption for ni =
|Si|. Furthermore, without loss of generality, we assume that
yh ≥ yj for all j ∈ Si (otherwise a different h can be chosen).
It implies that∑

j∈Si

yj π̂i,j =
∑
j∈Si

yj(πi,j + [u− πi,j]+)

≤
∑
j∈Si

yjπi,j +
∑
j∈Si

yhπi,j

=
∑
j∈Si

yjπi,j + yhπi,h < 0, (34)

where the second step follows from (33) and the last step uses∑
j yjπi,j < 0.
Applying the Farkas-Minkowski Theorem to the system of

linear equations in (30) with π̂i,j on the right hand side, the
existence of a non-negative solution (due to our induction
assumption for ni) implies that

∑
j∈Si yj1{j∈Ai} < 0 for

some Âi ⊆ Si. It means that∑
j∈Si+{h}

yj1{j∈Âi} = yh1{h∈Âi} +
∑
j∈Si

yj1{j∈Âi} < 0. (35)

The last step uses 1{h∈Âi} = 0 since h /∈ Si and Âi ⊆ Si.
This is exactly the desired inequality in (32). Thus, (31)
has a non-negative solution due to the Farkas-Minkowski
Theorem. The induction statement holds for ni + 1. Finally,
the solution indeed gives a probability distribution since∑
Ai⊆Si+{h} P(Ai) =

∑
j πi,j/ki = 1 due to (29). This

completes the proof. �

B. Proof of Lemma 2

Proof: Let Qmax be the maximum of waiting time {Qj , j ∈
Ai}. We first show that Qmax is upper bounded by the
following inequality for arbitrary z ∈ R:

Qmax ≤ z + [Qmax − z]+ ≤ z +
∑
j∈Ai

[Qj − z]+ , (36)

14

where [a]+ = max{a, 0} is a truncate function. Now, taking
the expectation on both sides of (36), we have

E [Qmax] ≤ z + E

∑
j∈Ai

[Qj − z]+

= z + E

∑
j∈Ai

1

2
(Qj − z + |Qj − z|)

= z + EAi

∑
j∈Ai

1

2
(E[Qj]− z + E|Qj − z|)

 ,
= z +

∑
j∈Ai

πi,j
2

(E[Qj]− z + E|Qj − z|), (37)

where EAi denotes the expectation over randomly selected
ki storage nodes in Ai ⊆ S according to probabilities
πi,1, . . . , πi,m. From Cauchy-Schwarz inequality, we have

E|Qj − z| ≤
√

(E[Zj]− z)2 + Var[Qj]. (38)

Combining (37) and (38), we obtain the desired result by
taking a minimization over z ∈ R.

Finally, it is easy to verify that the bound is tight for the
same binary distribution constructed in [44], i.e., Qj = z ±√

(E[Qj]− z)2 + Var[Qj] with probabilities:

P+ =
1

2
+

1

2
· E[Qj]− z√

(E[Qj]− z)2 + Var[Qj]
, (39)

and P− = 1 − P+, which satisfy the mean and variance
conditions. Therefore, the upper bound in (5) is tight for this
binary distribution. �
C. Derivation of Problem JLCM
Proof: Plugging the results from Lemma 2 and Lemma 3
into (15) and applying the same z to all T̄i (which relax the
problem and maintains inequality (5)), we obtain the desired
objective function Problem JLCM. In the derivation, we used
the fact that Λj =

∑
i λiπi,j ∀j from (3). Notice that the

first summation is changed from j ∈ Si in Lemma 2 to
j = {1, . . . ,m} because we should always assign πi,j = 0
to storage node j that does not host any chunks of file i, i.e.,
for all j /∈ Si. �
D. Proof of Lemma 7
Proof: Plugging ρj = Λj/µj into (17) and (18), it is easy to
verify that Xj and Yj are both convex in Λj ∈ [0, µj], i.e.,

∂2Xj

dΛ2
j

=
µ2
jΓ

2
j

(µj − Λj)
3 > 0,

∂2Yj
dΛ2

j

=
2µ2

j Γ̂
3
j

3 (µj − Λj)
3 +

µ4
jΓ

4
j (2µj + 4Λj)

(µj − Λj)4
> 0.

Similarly, we can verify that G =
[
Xj +

√
X2
j + Yj

]
is

convex in Xj and Yj by showing that its Hessian matrix is
positive semi-definite, i.e.,

∇2G =
1

2
(
X2
j + Yj

) 3
2

·
[
X2
j Xj

Xj 1

]
� 0.

Next, since G is increasing in Xj , Yj , their composition is
convex and increasing in Λj [46]. It further implies that F =
ΛjG/2 is also convex. This completes the proof. �

E. Proof of Theorem 2
Proof: To simplify notations, we first introduce 2 auxiliary
functions:

g =

m∑
j=1

Λj
2

[
Xj +

√
X2
j + Yj

]
, (40)

h = θ

r∑
i=1

m∑
j=1

[
Vj1(π(t)

i,j>0
) +

Vj(πi,j − π(t)
i,j)

(π
(t)
ı,j + 1/β) log β

]
.(41)

Therefore Problem (26) is equivalent to minπ(g + h) over
π = (π

(t)
i,j ∀i, j). For any β > 0, due to the the concavity of

logarithmic functions we have log(βy + 1) − log(βx + 1) ≤
β(y−x)/(βx+1) for any non negative x, y. Choosing x = π

(t)
i,j

and y = π
(t+1)
i,j and multiplying a constant Vj/ log β on both

sides of the inequality, we have

Vj(π
(t+1)
i,j −π(t)

i,j)

(π
(t)
ı,j + 1

β) log β
≥ Vj

log(βπ
(t+1)
i,j +1)

log β − Vj
log(βπ

(t)
i,j+1)

log β . (42)

Therefore we construct a new auxiliary function

ĥ = θ

r∑
i=1

m∑
j=1

Vj
log(βπi,j + 1)

log β
. (43)

Since π(t+1)
i,j minimizes Problem (26), we have

g(π(t+1)) + h(π(t+1)) ≤ g(π(t)) + h(π(t)). (44)

Next we consider a new objective function [g + ĥ] and show
that it generates a descent sequence, i.e.,

[g + ĥ](π(t+1))− [g + ĥ](π(t))

≤ h(π(t))− h(π(t+1)) + ĥ(π(t+1))− ĥ(π(t))

=

r∑
i=1

m∑
j=1

Vj(πi,j − π(t)
i,j)

(π
(t)
ı,j + 1/β) log β

+ ĥ(π(t+1))− ĥ(π(t))

≤ 0, (45)

where the first step uses (44) and the last step follows
from (42). Therefore, Algorithm JLCM generates a descent
sequence, π(t)

i,j for t = 0, 1, . . ., for objective function [g+ ĥ].
Notice that for any πi,j ∈ [0, 1], we have

lim
β→∞

ĥ(π) =

r∑
i=1

m∑
j=1

Vj1(πi,j>0), (46)

which is exactly the cost function in Problem JLCM. The
converging point of the descent sequence is also a local
optimal point of Problem JLCM as β →∞. �

