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Abstract—A complex cloud application consists of virtual
machines (VMs) running software such as web servers and load
balancers, storage in the form of disk volumes, and network con-
nections that enable communication between VMs and between
VMs and disk volumes. The application is also associated with
various requirements, including not only quantities such as the
sizes of the VMs and disk volumes, but also quality of service
(QoS) attributes such as throughput, latency, and reliability.
This paper presents Ostro, an OpenStack-based scheduler that
optimizes the utilization of data center resources, while satisfying
the requirements of the cloud applications. The novelty of the
approach realized by Ostro is that it makes holistic placement
decisions, in which all the requirements of an application—
described using an application topology abstraction—are con-
sidered jointly. Specific placement algorithms for application
topologies are described including an estimate-based greedy al-
gorithm and a time-bounded A* algorithm. These algorithms can
deal with complex topologies that have heterogeneous resource
requirements, while still being scalable enough to handle the
placement of hundreds of VMs and volumes across several
thousands of host servers. The approach is evaluated using both
extensive simulations and realistic experiments. These results
show that Ostro significantly improves resource utilization when
compared with naive approaches.

Index Terms—cloud; optimization; performance; scalability

I. INTRODUCTION

A cloud application forms a logical topology that consists of
multiple virtual machines (VMs) and disk volumes, together
with the network links that interconnect them. Such applica-
tions are typically deployed as multiple loosely-coupled com-
ponents that provide separate yet interdependent functions [1].
Instances of components then execute as VMs generating I/O
to/from disk volumes, and communicate with other instances
across a network. For example, Virtual Network Functions
(VNFs) often consist of a number of network functions such
as firewalls, routers, and CDN caches that are virtualized and
interconnected into a logical topology [2].

In addition to a logical layout, a cloud application has
properties associated with it. These include quantities such
as the size of a VM or a disk volume, together with quality
of service (QoS) attributes such as throughput, latency, and
reliability [3][4][5]. Properties can also include requirements
such as specific hardware or software affinities for VMs and
disk volumes, and anti-affinities among VMs and disk volumes
for better application reliability. We call the combination of
an application’s logical layout and properties the application
topology of that application.

A critical aspect of cloud operation is the placement of
applications onto the physical resources of a cloud infras-
tructure. This process is fundamentally a resource scheduling
problem, and requires balancing two objectives: respecting the
requirements represented by an application topology and max-
imizing resource utilization. The former is needed to provide
appropriate service to applications, while the latter is needed to
make efficient use of costly physical resources such as CPUs,
disks, and networks. The placement decision may arise not
just at application deployment time, but also at runtime if the
infrastructure is being managed adaptively and the resource
assignments to applications can be changed. These dynamic
effects, the large scale of contemporary cloud infrastructures,
and the need to handle the varying requirements of multiple
applications simultaneously combine to make this a technically
challenging multi-dimensional optimization problem.

This paper presents Ostro, a scalable OpenStack-based
scheduler for cloud applications that addresses these chal-
lenges in the context of large-scale data centers. The main
contribution of Ostro is making holistic placement decisions,
i.e., how it considers each application topology as an “indivis-
ible” unit and allocates all of the resources needed to execute
the application. The goal is to maximize resource utilization
across compute, storage, and network, while still meeting the
QoS requirements and other properties associated with the
application topology. This is in contrast with many current
resource schedulers such as the one used in OpenStack, which
treats each VM or disk volume request independently [6]. It
also goes beyond placement algorithms in the literature such
as [3][4][7][8], which focus only on network dependencies
between application components or have restrictions such as
uniformity of network flows or a single VM per host server.

In addition to the architectural details of Ostro, we describe
the three placement algorithms currently supported by the
scheduler. The first is an estimate-based greedy algorithm, the
second is an algorithm based on A* graph search [9][10][11]
that allows the search space to be extended efficiently, and the
third is a deadline-bounded search algorithm that is designed
to make a placement decision within a specified time bound.
All three are evaluated using both extensive simulation and
experiments with a realistic cloud storage application that
contains multiple application components using a number of
VMs and disk volumes. The current implementation of Ostro
focuses on placement within a data center, but it can serve



as the basis for placement across multiple data centers in the
wide area as well.

II. SYSTEM OVERVIEW

We have integrated Ostro with OpenStack
(www.openstack.org), a popular open-source cloud operating
system consisting of a collection of services such as Nova
(compute), Cinder (block storage), Neutron (networking),
and Heat (orchestration). A cloud tenant can create a cloud
application by invoking Nova and Cinder for each VM
and disk volume the application requires. Nova and Cinder
handle each request in isolation and use their own scheduling
algorithms to decide placements individually. As a result,
their placements are not optimized for the application, and
any other QoS attributes are not considered.

In contrast, an application topology allows the cloud tenant
to specify the elements and requirements of the entire applica-
tion (see Figure 2). Specifically, it allows the specification of
the VMs, disk volumes, and the network throughput between
any two VMs and between a VM and a disk volume. An
application topology also allows the specification of placement
diversity requirements for a set of VMs or disk volumes
with a diversity zone concept (i.e., anti-affinity). For example,
using diversity zones a tenant can specify that 10 VMs
running redundant database servers must be deployed across
10 different racks, or that 12 disk volumes must be placed on
12 separate disks for better reliability.

Ostro takes the application topology as input, and uses
information about the available resources in the data center to
determine the placement of all VMs and disk volumes of the
topology so that all the requirements are met while optimizing
resource utilization.
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Fig. 1: Ostro integration with OpenStack

Figure 1 outlines the placement process of Ostro with
OpenStack. In the current implementation, the application
topology is described using a Heat template extended with
diversity zones and a network pipe concept that specifies the
VM to VM and VM to disk volume bandwidth requirements
(QoS-enhanced Heat template). We provide a wrapper for the
OpenStack Heat service. The wrapper takes the Heat template,
and passes it to Ostro for placement optimization. Ostro
returns the placement decision indicating for each VM and
volume on which exact host and disk it should be deployed.

Low Bandwidth
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Fig. 2: Example application topologies: multi-tier (left) and
mesh communication (right)

The modified Heat template is then passed to the Heat engine
that calls Nova and Cinder to schedule the VMs and disk
volumes on the designated cloud resources.

A. Search Space for Optimal Placement Problem

Ostro optimizes the placement of a given application topol-
ogy on a set of physical resources in a data center. We start
by describing some of the specific challenges regarding the
application topology and the data center.

1) Application Topology: Cloud applications may have
large and complex topologies. The multi-tier [12][7] and mesh
communication [3] topologies in Figure 2 are such examples of
complex enterprise applications. Although Ostro can, in fact,
handle any arbitrary application topology, the two topologies
in the figure are used in our simulation with different scales
to evaluate scalability (Section IV). The resource requirements
associated with a given application topology such as those in
Figure 2 typically vary across components and network links,
i.e., are heterogeneous resource requirements. For example,
VMs containing web servers of a three-tier application are
mainly network intensive, while VMs containing database
servers tend to be mainly compute intensive. This complicates
the problem, and naive greedy approaches are insufficient. Os-
tro considers the co-existence of both compute- and network-
intensivenesses in a single application topology.

Formally, the application topology is defined as a graph
T a =< V,E >, where a node vi ∈ V is a VM or a
disk volume, and an edge ei,j ∈ E is a communication link
between two nodes vi and vj . Each vi and ei,j have property
attributes defining resource requirements such as the number
of vCPUs and the network bandwidth.

2) Data Center Topology: Analogously, the operating con-
ditions of a data center can vary widely in terms of how
much resources are available at each host at any given time.
One possible scenario is that the available remaining compute
and network capacities are spread non-uniformly across the
hosts. This would be the case, for instance, if the compute
resources of some hosts have enough capacity to accommodate
multiple VMs, but their remaining network bandwidth can
only accommodate a few, while the rest of the hosts are in
the opposite situation. Conversely, a homogeneous condition
would arise if all hosts and network links have sufficient
and evenly available resources for a new application. This
would allow multiple ways for placing the application onto
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Fig. 3: Hierarchical data center

the available hosts, and each solution would result in a similar
resource utilization. As might be expected, less uniformity
makes it more difficult to solve the placement problem.

In this paper, we consider a hierarchical data center T p

that is common in modern data centers [3][12][4][5][8][7]. As
illustrated in Figure 3, in T p, each host hk ∈ H is placed in
a rack with a top of the rack (ToR) switch, racks are grouped
under a pod switch, and pods are connected to a root switch. A
communication path between vi and vj may involve all three
levels of switches and consume network bandwidth on all three
levels of the network hierarchy depending on the placement
of vi and vj . Note that Ostro is not limited to hierarchical
network topologies, but accounts for any graphical topology
representing multiple connected data centers.

B. Objective Function and Constraints

Given application topology T a and data center T p, the
placement problem can be formulated as a constraint optimiza-
tion problem. Here, we formally define the objective function
and constraints.

1) Objective Function: Although any objective function
can be defined, in this paper, we focus on minimizing the
amount of bandwidth, ubw to be used for the VMs and disk
volumes of a given T a, and the total number of hosts, uc, after
placing T a. Formally, it can be defined as follows:

min(θbw
ubw

ũbw
+ θc

uc

ũc
)

where θbw + θc = 1. To unify two different usages, ubw and
uc can be normalized against the corresponding worst case
placements (i.e., ũbw and ũc, respectively).

For the minimal ubw, we place nodes of T a as close as
possible in T p once all constraints are met. Meanwhile, to
minimize uc, we place as many nodes of T a as possible
to hosts that already contain existing nodes of this or other
applications (i.e., they are not idle). By doing so, we may
increase ubw of T a, since nodes of T a may end up being
more spread out across those hosts.

2) Constraints: In this paper, we consider two different
types of constraints when solving the problem.

Capacity Constraints. Ostro accounts for capacity con-
straints of CPU, memory, disk space, and network bandwidth.
Formally, all possible candidates hosts Hi ∈ H for vi, must

meet the inequality constraints defined as, rcpu ≤ ccpu,
rmem ≤ cmem, and rvol ≤ cdisk , where rx and cx denote
the resource requirements of vi and the available capacity of
each candidate hk ∈ Hi for the resource type x, respectively.
For network bandwidth, all links of the path between two
hosts must have enough capacity. Consider the case where
vi communicates with vj , which is placed in another location.
Then, it must meet rbw ≤ min{cbwk , cbwtor, c

bw
pod, c

bw
root}. Here,

cbw is the available bandwidths of hk or each switch (i.e.,
ToR, pod, or root) connected along the path to the data center
where vi is placed.

Diversity Zone. The diversity zone constraint defines how
to segregate nodes of each application components (e.g.,
database replicas) when placing them (see the dashed gray
line in Figure 2). We define dzk for a set of nodes, Vk ∈ V
that must be placed at least across different z, where z can be
host, rack, pod, or data center. Note that a vi may belong to
multiple diversity zones. We assume that dzk can be computed
from the high-level reliability input provided by a cloud user
(e.g., the reliability should be 99.99%) as described in our
prior work [13].

C. Scalability

We consider the scalability of our approach. Due to the large
search space that is combinatorial between nodes of T a and
hosts of T p, the running time t can be very large, particularly
when dealing with heterogeneous resource requirements and
non-uniform resource availability. Hence, in such situations,
we need to address the trade-off between t and the optimal-
ity of the solution by effectively pruning and bounding the
large search space. Therefore, Ostro provides a time-driven
optimization that computes an optimized solution by a given
deadline T by controlling the pruning rate and bounding of
the search. By allowing a longer search deadline, Ostro can
generate a better solution.

III. OPTIMAL PLACEMENT

Placing a graph topology onto a hierarchical topology
with bandwidth constrained edges is a known NP-hard prob-
lem [14][4][5]. Hence, we have developed three heuristic
approaches to address the tradeoff between scalability and
optimality even under heterogeneous resource requirements
and non-uniform resource availability.

A. Estimate-Based Greedy Search

We first describe our estimate-based greedy approach (EG)
to efficiently solve the problem even under non-uniform re-
source availability in data centers.

1) Overall Approach: A typical greedy search approach can
compute a placement by taking one node v at a time from the
list V and placing it on the first h where it fits. This approach
can find a solution quickly but it requires that hosts of T p

(and nodes of T a) are sorted in an appropriate way. If there
is one bottleneck resource that is consumed consistently by
all nodes, it is trivial to sort them based on the usage of this
resource. For example, if all VMs of T a are mainly network



Algorithm 1 Estimate-based Greedy Algorithm (EG)

1: H∗ ← ø;
2: Sort(V );
3: while V 6= ø do
4: vi ← V.Pop();
5: Hi ← GetCandidates(vi, H);
6: for each hj ∈ Hi do
7: (ubw∗, uc∗)← GetUsage(vi, hj , H∗)
8: (ûbw, ûc)← GetHeuristic(vi, hj , H, H∗);
9: ubw ← (ubw∗ + ûbw); uc ← (uc∗ + ûc);

10: end for
11: hbest ← GetBest(vi, Hi);
12: H∗ ← H∗ ∪ (hbest ← vi);
13: end while

intensive, hosts can be sorted by available network bandwidth.
However, it may be more common that different VMs of a
single T a consume different resource types at different rates.
Hence, there is no single deciding resource type to be used
for sorting nodes.

In EG, shown in Algorithm 1, nodes are simply sorted
by the sum of relative weights of resource types (i.e.,∑

x=cpu,mem,disk,bw(rx/Rx), where Rx is the average total
requirement of resource type x across all VMs and disk vol-
umes) in Sort (line 2 of Algorithm 1). GetCandidates()
(line 5) then chooses a list of candidate hosts Hi for the
given vi from all hosts H by applying constraints described
in Section II-B2. We use v∗ ∈ V ∗ and h∗ ∈ H∗ to denote a v
of T a that has been already placed and a host h, on which the
v has been placed in the search, respectively. For the diversity
constraint dzk, it computes the topological distance (e.g., the
same rack or the same pod group) between each candidate host
hj and each h∗ in H∗ to check if the diversity constraint can
be met (e.g., if dhost, hj and h∗ must be separated in at least
different hosts). For the bandwidth constraint, it chooses all
v∗’s in V ∗ that are connected to the given vi, and then checks
if all links between the candidate hj and all hosts h∗’s, where
those connected v∗’s are placed, have enough capacity.

Instead of sorting hosts, EG explores all available hosts and
selects a hbest out of candidate hosts Hi. The decision-making
for hbest is based on the objective function (see Section II-B1),
that consists of two utility values. The first is the accumulated
resource usage (denoted by ubw∗ and uc∗) resulting from the
placement of nodes from the first v0 to the previously placed
node vi−1 in the sorted list V (i.e., V ∗). The second is the
heuristic lower bound of utility incurred by placing the nodes
from the current vi to the last node in V . We denote the lower
bound of utility and the remaining nodes by ûbw, ûc, and V̂ ,
respectively.

2) Heuristic Lower Bound: GetHeuristic() (line 8 of
Algorithm 1) estimates the lower bound of ûbw and ûc. This
can reduce the impact of sorting nodes (especially when
completely consistent sorting is infeasible) on the placement
of EG by approximately placing the remaining nodes in V̂
and comparing it with other choices of hj under given vi.
First, it places vi onto the given candidate host hj . Then, it
sorts all nodes in V̂ by the bandwidth requirement, and tries

to place each v̂ ∈ V̂ either any h∗ ∈ H∗ or any imaginary
host (denoted as ĥ ∈ Ĥ). If the following conditions meet,
it creates a new ĥ and places the v̂ on it: 1) if the capacity
constraints of H∗ and Ĥ are not enough, 2) if dz’s between
the v̂ and all nodes placed in H∗ and Ĥ are violated, 3) if
the v̂ has no link to any node in H∗ and Ĥ , and 4) if the v̂
has more bandwidth requirement with the rest of nodes in V̂
than those in H∗ and Ĥ . With this way, the v̂ is co-located
with nodes that are linked with more bandwidth. To achieve
the lower bound of utility, the ĥ should have enough capacity
(in our implementation, the capacity of ĥ for each resource
type is the max value of the resource type among all h’s), and
the imaginary hosts are not counted to ûc.
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Fig. 4: Process of placing nodes

Figure 4 illustrates an example placement procedure that
places v∗1 , v∗2 , v∗3 , v̂1, v̂2, and v̂3 (in this order). Three nodes
(v∗1 , v∗2 , and v∗3 , all in V ∗) have already been placed in h∗1, h∗2,
and h∗3 (all in H∗). v̂1, v̂2, and v̂3 are the remaining nodes in
V̂ that will be approximately placed. v̂1 cannot be placed in
h∗1 due to the lack of capacity. It cannot be placed in h∗2 and
h∗3 due to the violation of diversity zone (i.e., v̂1 must be in
a different rack from the rack where v∗2 and v∗3 are placed).
Thus, an imaginary host ĥ1 is created to place v̂1. With the
same reason, v̂2 cannot be placed in any host in H∗. v̂2 cannot
be placed in ĥ1 as well due to the violation of the diversity
zone with v̂1 (i.e., v̂2 must be in a host separated from v̂1) so
that v̂2 is placed in another new imaginary host ĥ2. Finally,
ĥ2 is chosen for v̂3 out of 4 candidate hosts (i.e., h∗2, h∗3, ĥ1,
and ĥ2) since v̂3 is linked to v̂2 with the largest bandwidth
requirement.

For each candidate placement, the total ubw is estimated by
the following function f(vi, hj):∑

v∈V

∑
v′∈V

(u′bw | max{dz(h← v, h′ ← v′), h 6= h′})

, for ∀(v, v′) connected in T a,∀(h, h′) ∈ (H∗ ∪ Ĥ)

u′bw increases as hosts h and h′ (where v and v′ are placed,
respectively) are separated further (e.g., z of diversity zone
dz increases from host to data center). uc is computed by
counting hosts used for getting ubw. Finally, EG computes
hbest (GetBest(), line 11) by,

arg min
hj∈H

f(vi, hj)



Algorithm 2 Bounded A* Algorithm (BA*)

1: OQ← OQ ∪ (V0, H
∗
0 , u0);

2: CQ← ø; umax ← 0;
3: (H∗upper, uupper)← RunEG();
4: while forever do
5: (Vp, H

∗
p , up)← OQ.Pop();

6: if up ≥ uupper then return H∗upper;
7: if Vp = ø then return H∗p ;
8: P ← CreateCandidatePaths(Vp, H

∗
p , up);

9: for each (Vq, H
∗
q , uq) ∈ P do

10: if ∃H ′∗ ∈ CQ s.t. H∗q = H ′∗ then continue;
11: if uq ≥ uupper then continue;
12: OQ.Insert(Vq, H

∗
q , uq);

13: end for
14: CQ← CQ ∪ (Vp, H

∗
p , up);

15: if up > umax then
16: umax ← up;
17: (H∗upper, uupper)← RunEG();
18: end if
19: end while

Note that this method estimates the (u∗+ û) as the achievable
lower bound of u, and will be used as an “admissible” heuristic
in the A* approach described in the next section.

The complexity of EG is polynomial (i.e., O(|V |3|H|), and
to make the approach more efficient, EG computes the utility
(lines 6–10) in parallel.

B. A* for Extended Search Space

Although EG can efficiently identify the placement through
a single search path (i.e., linearly identify h∗ for each v one by
one), the results are less effective, especially in heterogeneous
conditions (e.g., some are compute intensive, while others are
network intensive) because the sorting may be infeasible. To
resolve it, we have developed a bounded A* algorithm (BA∗,
shown in Algorithm 2), that requires sorting of neither the
hosts nor the nodes of T a.

1) Overall Approach: Basically, BA∗ explores all possible
search paths (while EG searches along a single search path).
Each individual path p includes all variables required for
search (utilization up, placements H∗p , and nodes Vp) that are
used for the single search path. New paths are branched out by
making all possible combinations of the current vi in Vp and
all candidate hosts (line 8 of Algorithm 2). These new paths
are inserted into the open queue OQ and sorted by u (line 12).
The new search starts with the path that has the least u in OQ
(line 5). BA∗ finishes the search once all nodes of currently
selected Vp are completely placed (line 7). Otherwise, it adds
the path into the closed queue CQ (line 14) and keep searching.
Once it finds the best path (line 6 or 7), it can safely ignore
the rest of the unfinished paths in OQ. This is because it uses
the “admissible” heuristic (GetHeuristic() as described in
the previous section) when creating new paths. That is, utility
values of unfinished paths will be always equal or greater than
u of the best path found.

2) Bounding the Search: BA∗ can reduce the search space
by pruning non-optimal paths, which utility values are even
more than u of EG. Once it captures that the search is

advanced by checking the current maximum umax, it runs
EG to compute the new upper-bound uupper (line 3 and 17)
and then, bounds the search by the uupper (line 11). uupper

decreases over time (i.e., closer to the optimal placement),
since remaining V̂p, which EG uses in the greedy search
once called, gets smaller. Hence, we can prune more candidate
paths, which up ≥ uupper (line 11). Finally, once the first entry
of OQ exceeds the current uupper, the search can be safely
finished with uupper (line 6). Note that under homogeneous
resource requirements and uniform operating conditions, the
search can immediately be finished with uupper since the
initial estimate u0 can be equal or greater than uupper.

3) Further Performance Improvement: BA∗ can further
reduce the search time by removing redundant computation
of u for candidate placements under certain assumption.
Specifically, if we can assume that nodes of each diversity
zone dzk have the same resource requirements, BA∗ computes
the candidate placement just for one of those nodes, since the
resulting placements for those nodes will be identical. Thus,
BA∗ copies the candidate placements into the open queue
OQ without any further computation. This assumption may be
reasonable in multi-tier cloud applications as mentioned in [7].

C. Deadline-Bounded Search

BA∗ performs well even under heterogeneous resource
requirements and non-uniform resource availability. However,
it is computationally expensive when we deploy a large T a

onto a large-scale T p. In the worst case, the time complexity
of BA∗ can be O(|V ||H||V |) without any assumption, where
|V ||H| is the number of all possible branches[10][11]. Hence,
it would be desirable to obtain a solution quicker while
sacrificing optimality only minimally.

To address the trade-off between the running-time t and op-
timality, we have developed the deadline-bounded A* (DBA∗)
that extends BA∗. It can find the near-optimal placement
within a given computation time limit T by dynamically
pruning paths over the progress towards the optimal u.

The pruning decision for a given path is based on the
number of nodes that have already been placed in the path,
(i.e., |V ∗p |). As a path is closer to the end of the search (i.e.,
its |V ∗p | is closer to |V |), it has less chance to be pruned.
Therefore, the search is biased to be depth first, and it avoids
the generation of too many candidate paths that have small and
identical |V ∗p |. DBA∗ increases the pruning rate over time. It
indicates that paths with larger u have more chance to be
pruned, since DBA∗ sorts paths in the open queue OQ by u
and searches with the path having the least u first.

Formally, each path is pruned with the probability p(x >
s), where x is a random number uniformly selected from a
range [0, r), and s is the progress rate that is computed by
(|V ∗p |)/|V |. The upper bound r of the range directly affects
the pruning rate, and it is dynamically adjusted depending on
the time left before T .
DBA∗ periodically monitors the time left, i.e., T left =

T − (tcurr− tstart), where tcurr is the current time and tstart

is the start time of the search. When half of the previously



estimated T left has been consumed, it decides if the search
can be completed by T left. If it cannot be done, DBA∗

adjusts the pruning rate by increasing r by a parameter α
(e.g., α = 0.2 ∗ (T /T left) in our implementation).

For making a decision on pruning, DBA∗ estimates the
number of paths left in the open queue OQ to be explored. In
particular, it computes the ratio (|P left| / |P |), where |P left|
is the estimate of the number of paths to be generated in OQ
along the search, and |P | is the estimate of the number of
paths DBA∗ can handle before T left. |P | can be estimated
by dividing T left by the average delay to handle a single path.
Meanwhile, |P left| is computed as follows:

|P left| = |P left|+ L[i] ∗ (1− p(x > s)),

L[i+ 1] = L[i+ 1] + L[i] ∗ (1− p(x > s))2 ∗ ¯|P|
where ∀i, l ≤ i < |V |

L[i] is the number of paths in OQ, where its length (i.e., |V ∗p |)
is i, and ¯|P| is the average number of newly generated paths
(line 8 of Algorithm 2). Then, the equation indicates that each
path with length i will be pruned with the rate p(x > s) when
being selected to progress, and if not pruned, it will generate
¯|P| new paths of length (i+1), but these new paths are pruned

at the rate p(x > s) as well before being inserted into OQ.
Conservatively, DBA∗ may handle all paths in OQ just

before it reaches a path with length |V |, so that |P left| will
be accumulated over all L[i]’s, where l ≤ i < |V |. It counts
|P left| starting from L[l] since paths with length i < l are
mostly handled at the moment of estimating. Note that ¯|P|
changes over time so that DBA∗ updates it periodically.

The larger the T , the better the placement produced by
DBA∗. This is because DBA∗ can consider more candidate
paths in OQ (i.e., do less pruning).

IV. EVALUATION

We evaluate two aspects of Ostro. First, we demonstrate the
impacts of application’s heterogeneous resource requirements
and non-uniform resource availability on placement optimiza-
tion. Second, we evaluate how Ostro addresses the tradeoff
between resource utilization and the running time on different
application scales.

A. Experiment Setup

Using a cloud application in a small-scale testbed, we
analyze the impact of application heterogeneity and non-
uniform resource availability on the resource utilization re-
sulted from our three algorithms. To compare against heuristics
presented in prior work, we have created two versions of
EG, one that minimizes the number of hosts used (EGC)
while the other minimizes bandwidth usage (EGBW ). EGC

minimizes uc by always trying to choose first the host with the
smallest remaining compute capacity. EGBW minimizes only
the ubw—similar to the prior work such as [4][5][8][7]—by
placing linked VMs as close to one another as possible. Note
that we have not implemented the same greedy algorithms
used in those prior works because they either use different

application models ([4][5][8]) or different objective function
([7]).
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Large VM (4 vCPUs, 8 GB Mem)

Large Volume (120 GB)

Low Bandwidth (10 Mbps)

Client Meta Server

Chunk Servers

Fig. 5: Simple topology of the cloud-based QFS application

For the cloud application, we employ QFS (Quantcast File
System [15]) consisting of chunk server VMs to store file
chunks to disk volumes, meta server VMs to maintain the
meta-data about the location of the file chunks, and client
VMs to run a benchmarking program for the distributed
file systems. Figure 5 illustrates a simple QFS application
topology that includes 1 meta server, 1 client, 12 chunk
servers, 15 disk volumes, and their resource requirements.
As shown in the figure, the QFS application topology has
heterogenous resource requirements (i.e., large and small VMs,
volumes, and bandwidth requirements).

We place the QFS application onto a cluster that has 16
host servers connected by a ToR switch. Each host has 16
CPU cores with dual 2.67 GHz Intel Xeon processors, 32 GB
memory, and a 1 TB disk. To establish non-uniform resource
availability on the cluster, we have deployed several VMs
and volumes to the cluster before computing the optimized
placement of the QFS application. Specifically, the first four
hosts of the cluster are relatively lightly utilized (i.e., 8 or 10
available CPU cores and more than 20 GB free memory), the
next four have medium utilization (i.e., 5 or 6 available cores
and 15–19 GB of available memory), the next four hosts are
resource constrained (i.e., less than 5 cores and less than 15
GB memory), and the final four are idle with all the cores and
memory available. The bandwidth between each host and ToR
switch is 3200 Mbps.

B. Experimental Results

EGC EGBW EG BA∗ DBA∗

Bandwidth (Mbps) 4480 1980 2000 1980 1980
New active hosts 0 4 0 1 1
Run-time (sec) 0.058 0.082 0.084 7.842 0.513

TABLE I: Comparison under non-uniform resource availabil-
ity.

We first set θbw and θc to 0.99 and 0.01, respectively,
for EG, BA∗, and DBA∗ to see how these algorithms can
minimize bandwidth usage. Here, uc is used as the tie-breaker
in the search.



As shown in Table I, EG, BA∗, and DBA∗ reserve less
than half of the bandwidth used by EGC because EGC

does not consider the communication links between VMs,
but merely performs bin-packing based on available host
resources. EG reserves a little more bandwidth than the mini-
mum value achieved by EGBW , BA∗, and DBA∗. However,
EG does not utilize any new hosts, while EGBW uses all
the remaining idle hosts to minimize the bandwidth usage.
This is because EGBW tries to use the hosts that have the
most available bandwidth first. Note that there are 12 hosts
already used by other VMs in the testbed, and the number of
new active hosts in the table indicates the number of formerly
idle hosts that are now used to run components of the QFS
application.

Optimizing the placement of the QFS application relies on
placing as many chunk servers as possible together with the
client VM on a single host, and placing each volume with
corresponding linked VM. All algorithms except EGC come
up with such placement. EGBW , BA∗, and DBA∗ can save
further 20 Mbps by placing the meta server in a new host.

This experiment shows that DBA∗ can efficiently identify a
placement that has the same resource utilization as that of BA∗

but its running time is much shorter. Even under non-uniform
resource availability, DBA∗ (and BA∗) can bound the search
space on the ideal co-placements of QFS components and
prune many other non-optimal paths after it runs EG at the
beginning of the search. Additionally, DBA∗ prunes further to
finish the search within the given deadline. In our experiments,
we set T (running time) to 0.5 sec. DBA∗ can identify the
best placement after running EG two times in the search.

Finally, we increased θc to 0.4 increase the importance of
minimizing the number of hosts used in the placement. The
resource utilizations of EGC , EGBW , and EG remained the
same as those reported in Table I, while the values of BA∗

and DBA∗ were changed to be identical with the values of
EG. This shows that BA∗ and DBA∗ adjust the placement
based on θc, while EGC , EGBW , and EG rely on a fixed
initial setup by sorting nodes.

EGC EGBW EG BA∗ DBA∗

Bandwidth (Mbps) 2380 1980 1980 1980 1980
New active hosts 4 4 4 4 4
Run-time (sec) 0.055 0.082 0.082 0.882 0.185

TABLE II: Comparison under uniform resource availability

We also perform an experiment under uniform resource
availability, where all hosts were idle before QFS was de-
ployed. As shown in Table II, all algorithms except EGC

achieve the same resource utilization. This is because the
available capacity of each host is large and identical and
therefore, any host can be chosen as the best fit in the search
process. Specifically, the number of hosts used is determined
simply by the diversity zone requirements of the chunk servers
in all algorithms and then, all algorithms except EGC try
to co-locate components of QFS that have a communication
link with each other. Moreover, EG can achieve the same
resource utilization as BA∗, and therefore DBA∗ and BA∗

can finish the search at an early stage by significantly bounding
the search space using EG.

C. Simulation Setup

To evaluate its scalability, we executed Ostro on simulated
application topologies and data centers at different scales.
Two types of application topologies, a multi-tier [12][7] and
a mesh communication [3] topologies, as shown in Figure
2 are used. The multi-tier topology has 5 tiers, where each
tier is populated with some number of nodes ranging from 5
to 40. Nodes of each tier are divided into 2 diversity zones
dhost. For the mesh communication topology, the size of the
topology ranges from 25 to 200 VMs. Each diversity zone
dhost has 5 VMs, and we scale up the topology by increasing
the number of disjoint diversity zones from 5 to 40. For each
diversity zone, we randomly select around 80% of the other
diversity zones and establish communication links between
VMs in these separate diversity zones.

For both applications, we configure heterogeneous resource
requirements by mixing compute intensiveness and networking
intensiveness as shown in Table III. For the simulation with
homogeneous requirements, we set all VMs with 2 vCPUs, 2
GB memory, and 50 Mbps.

vCPUs Memory (GB) Bandwidth (Mbps)
40% of VMs 1 1 100
20% of VMs 2 2 50
40% of VMs 4 4 10

TABLE III: Heterogeneous resource requirements

We simulate a large-scale data center with a total of 2400
hosts arranged in 150 racks of 16 hosts each. The hierarchical
structure is based on Figure 3, but without the pod switches
for simplicity. The bandwidth between each host and the ToR
switch is 10 Gbps, and between the ToR switch and the root
switch is 100 Gbps. We configure the non-uniform resource
availability of hosts in each rack as shown in Table IV. For
the homogeneous case, we set all hosts as fully available. In
the simulation, we set θbw and θc to 0.6 and 0.4, respectively.

CPU cores Memory (GB) Bandwidth (Gbps)
25% of hosts 9–16 17–30 0–1.5
25% of hosts 6–8 8–16 2–5
25% of hosts 0–5 0–7 6–8
25% of hosts 16 32 10

TABLE IV: Configuration of non-uniform resource availability

D. Simulation Results

1) Time-Optimality Tradeoff: Figure 6 illustrates the trade-
off between running time and the optimality of the placement.
In this simulation, we run DBA∗ with different T (running
time) for the multi-tier application with 200 VMs with het-
erogenous requirements. Each data point is the average of 20
executions.

As T increases, better resource utilization is achieved both
in terms of bandwidth and the number of hosts. In particular,
DBA∗ dramatically decreases the bandwidth usage when T
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Fig. 6: Tradeoff between T and the optimality of placement

is increased from 4.9 to 29.8 seconds. After this point, the
reduction is minimal. This indicates that the critical decisions
of DBA∗ for exploring the search space are made in the early
stages of the search with high probability. Before exponentially
expanding the search, DBA∗ increasingly prunes many can-
didate paths, which are likely non-optimal. With T = 20, the
total pruning rate reaches around 90%.

The lower bound of T can be estimated as two times the
running time of EG taken for the first bounding. This is
because the number of paths handled at each stage in DBA∗

(i.e., |V ||H|) is approximately the same as the number handled
in EG.

2) Multi-Tier Application: We further examine the tradeoff
between running time and optimality by comparing four algo-
rithms with various configurations of the multi-tier application.
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Fig. 7: Bandwidth reserved for multi-tier application

Similar to the QFS experiment, the difference of resource
utilization between algorithms under heterogeneous require-
ments and non-uniform resource availability is higher than
under homogeneous requirements and uniform availability.
Moreover, the difference increases as the size of the topology
increases, as shown in Figure 7. This indicates the sorting of
|V | significantly affects the placement. DBA∗ does not use
initial sorting, so it will perform well in any condition.

Figure 7a and Figure 8 also show the tradeoff between
the bandwidth usage and the host usage. As EGBW tries
to minimize the bandwidth usage (Figure 7a), it uses many
new hosts that have more available bandwidths (Figure 8).
Meanwhile, EGC consolidates VMs to fewer hosts but these
VMs consume more bandwidth to communicate across hosts
or racks. EG and DBA∗ consider both bandwidth and host
usage. Especially, DBA∗ tries to identify the optimal balance
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between them as shown in the graphs.
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Fig. 9: Run time comparison for multi-tier application

The running time of EG is similar with those of EGC

and EGBW while it identifies a better balance of resource
utilization even under heterogeneous requirements (Figure 9a).
However, DBA∗ spends more time than the other algorithms
to identify the best placement. This is because the bounding
ratio driven by the first EG run in DBA∗ is not so effective,
so that DBA∗ should explore more candidate placements until
the second run of EG is performed. As shown in Figure 9b, the
running time of DBA∗ is close to the other algorithms under
homogeneous resource requirements and uniform resource
availability case since the first EG run in this case tightly
bounds the search space.

3) Mesh Communication Application: Figure 10 and 11
show the results of the mesh communication application case.
The overall trend is consistent, but the bandwidth usage
is significantly larger than with the multi-tier application,
since each VM has more bandwidth requirements. Moreover,
because the application topology is more complex, and the
resource requirements of VMs are more varied than in the
previous case, the running time is higher in all algorithms. The
results also indicate that DBA∗ identifies better placement for
the bandwidth usage than all other greedy algorithms including
EGBW when dealing with such a complex application.

E. Online Adaptation

An application topology can be updated online by, for
example, adding or removing VMs, or changing resources re-
quirements. In this case, Ostro also re-computes the placement
online. We observe that such updates are typically made in an
incremental way on a small portion of the application topology
over time, rather than drastic changes on a large portion in a
short period. Hence, computing the new optimized placement
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Fig. 10: Bandwidth and run time comparisons for mesh communication application
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Fig. 11: Number of hosts for mesh application

can be done very efficiently. We have simulated adding 10%
more small VMs on the first or second tier of the multi-
tier application topology (200 VMs), and the new placement
optimization is completed within 0.3 sec using DBA∗.

This simulation also shows that adding additional VMs can
trigger the re-positioning of previously placed nodes in the
application, and it can in fact spread out to a large portion of
the application nodes if we are adding more than 10% VMs.
We will continue to investigate incremental update strategies
and tradeoffs as part of our future work.

V. RELATED WORK

The problem of mapping a logical topology (such as our
application topology) into a physical topology has been ad-
dressed in many research areas including distributed memory
parallel computing, peer-to-peer systems, and grid computing.
In this section, we introduce some recent research that has
tackled the similar problem but in the context of data center
and cloud computing.

Oktopus [4] and SecondNet [3] use a virtual topology as
the means for explicitly exposing QoS requirements, and use
heuristic algorithms to reduce the cost for cloud providers
when scheduling the virtual topology. Oktopus assumes a
virtual cluster topology resembling the traditional hierarchical
data center (i.e., one- or two-level tree structure rooted with a
virtual switch), while SecondNet can deal with more complex
topologies. SecondNet uses a greedy algorithm that places
one link between two VMs at a time, but assumes that
one host server can contain only one VM of the virtual
topology. Authors of [8] use a virtual data center topology
similar to Oktopus, and propose a heuristic algorithm to satisfy
stochastic bandwidth requirements under demand uncertainty.
CloudMirror [7] considers application reliability for complex

application topologies similar to Ostro’s, but it mainly focuses
on the bandwidth resource. Rather than assuming limited
virtual topologies and limited homogenous and uniform re-
source usage environments, Ostro supports any application
topology in arbitrary environments across compute, storage,
and network resources. Therefore, the placement algorithm of
Ostro is more general.

Proteus [5] maximizes the network bandwidth utilization
between two VMs, but deals with it dynamically. Its dynamic
mechanism can be complementary to our approach. A heuristic
approach that minimizes the number of host servers to save
energy while placing VMs is proposed in [16]. Similarly,
authors of [17] attempt to intensively consolidate VMs based
on resource usage patterns. However, those approaches do not
consider the dependencies between application components.

Another problem relevant to this research area is service
composition for cloud applications. For example, [18] ad-
dresses the optimal selection of an instance for each com-
ponent from multiple clouds, [19] takes the network distance
and load balancing into consideration when selecting servers,
Cloud-GPS [20] tries to minimize the network traffic and
latency, and [21] accounts for energy consumption when tack-
ling the service selection problem. However, these proposals
do not address large application topologies, but consider only
single tier applications.

Another problem that explicitly considers the networking
between components is the service routing problem. Its goal
is to use data center networks efficiently by choosing the
network routes for application-level flows between existing
VMs. Thus, the assumption is that VMs have already been
placed and the scheduling algorithm only considers the routing
of communication paths. Hedera [22] routes long-lived flows
to achieve high bandwidth utilization in a data center by
leveraging the fact that there are multiple paths between any
two host servers. A load balancing algorithm integrated with
an OpenFlow controller is presented in [23]. It makes routing
decisions aimed at evenly distributing the network traffic in a
data center network. A similar mechanism to consolidate the
network traffic to a few links is presented in [24]. Unlike these
approaches, we focus on the placement of a given application
topology that considers not only the network resources in
decision making, but also compute and storage.

Many heuristic algorithms can be used to solve the type
of optimization problems addressed here. The A* Prune algo-



rithm was proposed to find K shortest paths in a graph subject
to multiple constraints [25]. An A* graph search algorithm to
place parallel service workflow into multiple data centers was
proposed in [26]. Load balancing for packet routing using a
mixed integer programming with the goal of minimizing the
network energy consumption is presented in [27]. Evolutionary
approaches can also be used to determine the optimal solution
in this domain, including Simulated Annealing [28], Genetic
Algorithm [29], Particle Swarm Optimization [30], and Artifi-
cial Bee Colony [31]. However, it is non-trivial to guarantee an
optimal solution in a tight time bound for complex application
topologies using such heuristic algorithms.

VI. CONCLUSIONS

In this paper, we have addressed the problem of placing
complex applications in large-scale data centers, and presented
an OpenStack-based solution called Ostro. The goal of Ostro
is to meet the dual goals of optimizing resource utilization
and meeting application requirements, including properties
related to resource requirements, diversity of placement for
reliability, and communication dependencies. To do this, we
define application topology as our fundamental and indivisible
unit of scheduling. This abstraction captures the reality that a
given application is a complex entity consisting of multiple
different types of resources, QoS requirements, and resource
usage patterns that all need to be considered holistically when
making placement decisions. Ostro does this, while also deal-
ing with the complexities introduced by multi-tenancy such
as non-uniform resource availability. We have demonstrated
the effectiveness of Ostro under multiple scenarios using both
simulation and experimental results with a real application.
We also show the impacts of heterogenous resource require-
ments and non-uniform resource availability on the optimized
placement, and evaluated how Ostro effectively addresses the
tradeoff between scalability and optimality.

As future work, we plan to add other property attributes to
application topologies, including latency requirements for the
communication links between nodes, as required by real world
applications. We also envision specifying additional properties
for VMs. For example, a VM could have a guaranteed or best
effort CPU reservation. These demands do not affect the main
approach used by Ostro, but do broaden the requirements for
the optimized placement.
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