
Partial-Parallel-Repair (PPR):
A Distributed Technique for Repairing Erasure Coded Storage

Subrata Mitra†, Rajesh Panta‡, Moo-Ryong Ra‡, Saurabh Bagchi†

{mitra4, sbagchi}@purdue.edu {rpanta, mra}@research.att.com

†Purdue University ‡AT&T Labs Research

Abstract

With the explosion of data in applications all around us, era-

sure coded storage has emerged as an attractive alternative

to replication because even with significantly lower storage

overhead, they provide better reliability against data loss.

Reed-Solomon code is the most widely used erasure code

because it provides maximum reliability for a given storage

overhead and is flexible in the choice of coding parameters

that determine the achievable reliability. However, recon-

struction time for unavailable data becomes prohibitively

long mainly because of network bottlenecks. Some proposed

solutions either use additional storage or limit the coding pa-

rameters that can be used. In this paper, we propose a novel

distributed reconstruction technique, called Partial Parallel

Repair (PPR), which divides the reconstruction operation

to small partial operations and schedules them on multiple

nodes already involved in the data reconstruction. Then a

distributed protocol progressively combines these partial re-

sults to reconstruct the unavailable data blocks and this tech-

nique reduces the network pressure. Theoretically, our tech-

nique can complete the network transfer in ⌈(log2(k + 1))⌉
time, compared to k time needed for a (k,m) Reed-Solomon

code. Our experiments show that PPR reduces repair time

and degraded read time significantly. Moreover, our tech-

nique is compatible with existing erasure codes and does

not require any additional storage overhead. We demonstrate

this by overlaying PPR on top of two prior schemes, Local

Reconstruction Code and Rotated Reed-Solomon code, to

gain additional savings in reconstruction time.

Keywords Erasure code, Distributed storage, Network

transfer, Repair, Reconstruction, Utilization

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

EuroSys ’16, April 18-21, 2016, London, United Kingdom

Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4240-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2901318.2901328

1. Introduction

Tremendous amount of data has been created in the past

few years. Some studies show that 90% of world’s data was

created in the last two years [7]. Not only are we generating

huge amounts of data, but the pace at which the data is being

created is also increasing rapidly. Along with this increase,

there is also the user expectation of high availability of

the data, in the face of occurrence of failures of disks or

disk blocks. Replication is a commonly used technique to

provide reliability of the stored data. However, replication

makes data storage even more expensive because it increases

the cost of raw storage by a factor equal to the replication

count. For example, many practical storage systems (e.g.,

HDFS [43], Ceph [1], Swift [6], etc.) maintain three copies

of the data, which increases the raw storage cost by a factor

of three.

In recent years, erasure codes (EC) have gained favor

and increasing adoption as an alternative to data replication

because they incur significantly less storage overhead, while

maintaining equal (or better) reliability. In a (k,m) Reed-

Solomon (RS) code, the most widely used EC scheme, a

given set of k data blocks, called chunks, are encoded into

(k +m) chunks. The total set of chunks comprises a stripe.

The coding is done such that any k out of (k + m) chunks

are sufficient to recreate the original data. For example, in

RS (4, 2) code, 4MB of user data is divided into four 1MB

blocks. Then, two additional 1MB parity blocks are created

to provide redundancy. In case of a triple replicated system,

all four 1MB blocks are replicated three times. Thus, an RS

(4, 2) coded system requires 1.5x bytes of raw storage to

store x bytes of data and it can tolerate up to two data block

failures. On the other hand, a triple replication system needs

3x bytes of raw storage and can tolerate the same number of

simultaneous failures.

Although attractive in terms of reliability and storage

overhead, a major drawback of erasure codes is the expen-

sive repair or reconstruction process — when an encoded

Figure 1: Percentage of time taken by dif-

ferent phases during a degraded read using

traditional RS reconstruction technique.

Figure 2: Comparison of data transfer pattern between traditional and PPR

reconstruction for RS (3, 2) code. C2, C3, etc. are the chunks hosted by the servers.

When Server S1 fails, Server S7 becomes the repair destination. Network link L
to S7 is congested during traditional repair.

chunk (say c bytes) is lost because of a disk or server1

failure, in a (k,m) code system, k × c bytes of data need

to be retrieved from k servers to recover the lost data. In

the triple replicated system, on the other hand, since each

chunk of c bytes is replicated three times, the loss of a

chunk can be recovered by copying only c bytes of data from

any one of the remaining replicas. This k-factor increase

in network traffic causes reconstruction to be very slow,

which is a critical concern for any production data center

of reasonable size, where disk, server or network failures

happen quite regularly, thereby necessitating frequent data

reconstructions. In addition, long reconstruction time de-

grades performance for normal read operations that attempts

to read the erasured2 data. During the long reconstruction

time window, the probability of further data loss increases,

thereby increasing the susceptibility to a permanent data

loss.

It should be noted that, while it is important to reduce

repair traffic, practical storage systems also need to maintain

a given level of data reliability and storage overhead. Using

erasure codes that incur low repair traffic at the expense

of increased storage overhead and inferior data reliability

is therefore a non-starter. However, reducing repair traffic

without negatively impacting storage overhead and data re-

liability is a challenging task. It has been shown theoreti-

cally that there exists a fundamental tradeoff among data

reliability, storage overhead, volume of repair traffic, and

repair degree. Dimakis et al. [17] provide a mathematical

formulation of an optimal tradeoff curve that answers the

following question—for a given level of data reliability (i.e.

a given (k,m) erasure coding scheme), what is the minimum

repair traffic that is feasible while maintaining a given level

of storage overhead? At one end of this optimal curve lies

a family of erasure codes called Minimum Storage Codes

that require minimum storage overhead, but incur high repair

bandwidth. At another end of the spectrum lies a set of

erasure codes called Minimum Bandwidth Codes that require

optimal repair traffic, but incur high storage overhead and

1 We use the term “server” to refer to the machine that stores the replicated
or erasure-encoded data or parity chunks.
2 An erasure refers to loss, corruption, unavailability of data or parity

chunks.

repair degree. Existing works fall at different points of this

optimal tradeoff curve. For example, RS codes, popular in

many practical storage systems [14, 36], require minimum

storage space, but create large repair traffic. Locally re-

pairable codes [22, 31, 42] require less repair traffic, but add

extra parity chunks, thereby increasing the storage overhead.

In this paper, we design a practical EC repair technique

called PPR, which reduces repair time without negatively

affecting data reliability, storage overhead, and repair de-

gree. Note that our technique reduces repair time, but not

the total repair traffic aggregated over the links. Further, our

approach is complementary to existing repair-friendly codes

since PPR can be trivially overlaid on top of any existing EC

scheme.

Code

params

Users Possible reduction

in network transfer

Possible reduction in max-

imum BW usage/server

(6,3) QFS[30], Google

ColossusFS[2]

50% 50%

(8,3) Yahoo Object Store[8] 50% 62.5%

(10,4) Facebook HDFS [35] 60% 60%

(12,4) Microsoft Azure [22] 66.6% 66.6%

Table 1: Advantages of PPR: Potential improvements in

network transfer time and maximum bandwidth requirement

per server

Key insight A key reason why reconstruction is slow in EC

systems is the poor utilization of network resources during

reconstruction. A reconstruction of the failed chunk requires

a repair server to fetch k chunks (belonging to the same

stripe as the failed chunk) from k different servers. This

causes the network link into the repair server to become

congested, increasing the network transfer time. The mea-

surements in our clusters show that network transfer time

constitutes up to 94% of the entire reconstruction time, as

illustrated in Fig. 1. Other researchers have also reported

similar results [26, 36, 42, 44]. Fig. 2 shows an example of

a reconstruction of a failed chunk in a (3, 2) EC system. The

network link into the repair server (server S7) is three times

more congested than network links to other servers. PPR

attempts to solve this problem by redistributing the recon-

struction traffic more uniformly across the existing network

links, thereby improving the utilization of network resources

and decreasing reconstruction time. In order to redistribute

the reconstruction traffic, PPR takes a novel approach for

performing reconstruction — instead of centralizing recon-

struction in a single reconstruction server, PPR divides re-

construction into several partial parallel repair operations

that are performed simultaneously at multiple servers, as

shown in Fig. 2. Then these results from partial computation

are collected using a tree-like overlay network. By splitting

the repair operation among multiple servers, PPR removes

the congestion in the network link of the repair server and

redistributes the reconstruction traffic more evenly across

the existing network links. Theoretically, PPR can com-

plete the network transfer for a single chunk reconstruction

in O(log2(k)) time, compared to O(k) time needed for a

(k,m) RS code. Table 1 shows expected reduction in net-

work transfer time during reconstruction for typical erasure

coding parameters used in practical systems. Although PPR

does not reduce the total amount of data transferred during

reconstruction, it reduces reconstruction time significantly

by distributing data transfers more evenly across the network

links.

One of the benefits of PPR is that it can be overlaid on

top of almost all published erasure coding schemes. The

list includes, but is not limited to, the most widely used

RS code, LRC code (Locally Repairable Code or Local

Reconstruction Code [22, 31, 42]), PM-MSR code [36], RS-

Hitchhiker code [38], Rotated RS [24] code. This is because

the distribution of PPR is orthogonal to the coding and

placement techniques that distinguish these prior works.

In considering the effect of any scheme on reconstruction

of missing chunks in an EC system, we need to consider two

different kinds of reconstruction. The first is called regular

repair or proactive repair, in which a monitoring daemon

proactively detects that a chunk is missing or erroneous

and triggers reconstruction. The second is called degraded

read, in which a client tries to read a lost data chunk that

has not been repaired yet and then has to perform recon-

struction in the critical path. PPR achieves a significant

reduction in times for both these kinds of reconstruction.

Degraded reads are an important concern for practical stor-

age systems because degraded read operations happen quite

often, more frequently than regular repairs. Transient errors

amount to 90% of data center failures [19], because of is-

sues like rolling software updates, OS issues, and non-disk

system failures [22, 24]. In these cases, actual repairs are

not necessary, but degraded reads are inevitable since client

requests can happen during the transient failure period. Fur-

thermore, many practical systems delay the repair operation

to avoid initiating costly repair of transient errors [44].

PPR introduces a load-balancing approach to further

reduce the reconstruction time when multiple concurrent

requests are in progress. We call this variant m-PPR. When

selecting k servers out of (k + m) available servers for

reconstruction, PPR chooses those servers that have already

cached the data in memory, thereby avoiding the time-

consuming disk IO on such servers. The m-PPR protocol

tries to schedule the simultaneous reconstruction of multiple

stripes in such a way that the network traffic is evenly dis-

tributed among existing servers. We present further details

of m-PPR in Sec. 6.

We implemented PPR on top of the Quantcast File Sys-

tem (QFS) [30], which supports RS-based erasure coded

storage. For typical erasure coding parameters depicted in

Table 1, our prototype achieves up to a 59% reduction in

repair time out of which 57% is from reduction in network

transfer time alone. Such significant reduction in reconstruc-

tion time is achieved without degrading data reliability or

increasing storage overhead.

This paper makes the following contributions:
• We introduce PPR, a novel distributed reconstruction

technique that significantly reduces network transfer time

and thus reduces overall reconstruction time for erasure

coded storage systems by up to 59%.
• We present additional optimization methods to further

reduce reconstruction time: a) a caching scheme for re-

ducing IO read time and b) a scheduling scheme targeted

for multiple simultaneous reconstruction operations.
• We demonstrate our technique can be easily overlaid

on previous sophisticated codes beyond Reed-Solomon,

such as LRC and Rotated RS, which were targeted to

reduce repair time. PPR provides additional 19% and

35% reduction in reconstruction time, respectively, over

and above these codes.

The rest of the paper is organized as follows. In Sec. 2

we give a primer of the mathematics behind RS coding.

Sec. 3 provides motivation and Sec. 4 describes the main

PPR technique in detail. In Sec. 5 we talk about handling

multiple reconstructions using PPR. Sec. 6 provides design

and implementation details. In Sec. 7 we evaluate PPR w.r.t

traditional repair and other proposed solutions. In Sec. 8 we

discuss the related works and finally in Sec. 9 we conclude.

2. Primer on Reed-Solomon Coding

(a) RS (4, 2) encoding (b) RS (4, 2) reconstruction

Figure 3: Encoding and Reconstruction in Reed-Solomon

coding

Erasure coded storage is attractive mainly because it re-

quires less storage overhead for a given level of reliability.

Out of many available erasure coding techniques, Reed-

Solomon (RS) coding [39] is the most widely used. RS code

belongs to the class of Maximum Distance Separable (MDS)

codes [27], which offers the maximum reliability for a given

storage overhead. For a (k,m) RS code, the available data

item of size N is divided into k equal data chunks each of

size N/k. Then m additional parity chunks are calculated

from the original k data chunks. The term stripe refers to

this set of (k + m) chunks that is created from the original

data. The mathematical property, based on which the parity

chunks are created, ensures that any missing chunk (data or

parity) can be reconstructed using any k of the remaining

chunks. After the reconstruction process, the server where

the reconstructed data is hosted is referred to as the repair

site. Thus, the repair site is a server for a regular repair

while for degraded read, it is the client component which

has issued the read request.

RS Encoding: An RS encoding operation can be repre-

sented as a matrix-vector multiplication where the vector

of k data chunks is multiplied by a particular matrix G of

size (k + m) × k, as illustrated in Fig. 3a for a (4, 2)

RS code. This matrix G is called the generator matrix and

is constructed from the Vandermonde matrix [13] and the

elements aij etc. are calculated according to Galois Field

(GF) arithmetic [39]. In GF arithmetic, addition is equiva-

lent to XOR; thus, adding chunk A with chunk B would

involve bit-wise XOR operations. Multiplying chunks by a

scalar constant (such as the elements of G) is equivalent to

multiplying each GF word component by the constant.

RS Reconstruction: In Fig. 3a, when a chunk is lost, it can

be reconstructed using some linear algebraic operations with

G and a remaining chunk set from the stripe. For example,

in Case-1 in Fig. 3b, if a parity chunk (e.g., P2) is lost, it can

be recalculated by multiplying the corresponding row (i.e.

the last row in the example) of G by the data chunk vector.

On the other hand, if a data chunk (e.g., D3) is lost, the

reconstruction involves two steps: the first step calculates a

decoding matrix H , by taking the inverse of a matrix created

using any k (i.e., four in our example) surviving rows of G.

We refer to the elements of H as decoding coefficients. The

second step multiplies the previously selected k surviving

chunks (a combination of data and parity) by the row of the

decoding matrix corresponding to the lost chunk (i.e. the 3rd

row in the figure). Thus the decoding process is to solve a

set of independent linear equations.

3. The Achilles’ Heel of EC Storage:

Reconstruction Time

Both for regular repair and degraded read, the reconstruction

path consists of three major steps: multiple servers read

the relevant chunks from their own disks (usually done in

parallel at each server), each server sends the read chunk to

the repair site over the network and finally some computation

is performed at the repair site to reconstruct the erasured

chunk. For regular repairs, the reconstructed chunk is finally

written back to the disk while for degraded reads, the data

is directly used by the user request. Thus, the reconstruction

time for (k,m) RS coding can be approximated as follows

Treconst =
C

BI

+
kC

BN

+ Tcomp(kC) (1)

Where C is chunk size, BI and BN denote the IO and

network bandwidth, respectively. Tcomp is the computation

time, which is a function of a total data size (kC).

As we see from Fig. 1, network transfer and IO read

are the two most time consuming steps, while the compu-

tation time is relatively insignificant. Among these, network

transfer time is the most dominant factor because k chunk

transfers are required per reconstruction. Often such huge

data transfer creates a network bottleneck near the repair site.

For example, Facebook [42] uses RS(10, 4) code with a data

chunk size of 256MB. In this case, for repairing a single

chunk, more than 20Gbits need to be funneled into one

server. This volume of data has been found to overwhelm

network resources in many practical cases leading to ex-

tremely long reconstruction time. In spite of recent advances

in network technology, with the rapid growth of network

heavy applications, the network still remains the most scarce

resource in data centers and we anticipate network transfer

time will continue to remain a bottleneck for reconstruction

operations in EC storage.

Such long reconstruction time would still have been a

non-issue if reconstructions were infrequent enough. How-

ever, traces of failures from large data centers [35, 42] in-

dicate, that is not the case. Analyzing failures in Facebook

data centers, Rashmi et al. [35] report on average 50 machine

unavailability events (where the machine fails for more than

15 minutes) per day, in a data center with a few thousand ma-

chines, each of which has a storage capacity of 24-36TB. To

maintain data reliability, these events ultimately lead to re-

construction operations. Moreover, Sathiamoorthy et al. [42]

report that transient errors with no permanent data loss corre-

spond to 90% of data center failure events. These cases often

lead to degraded reads where the reconstruction operation

happens in the critical path of the user read request.

Thus, long reconstruction time is the main hindrance

toward wide scale adoption of erasure coded storage for

distributed storage and network transfer time is expected to

remain the primary cause for this for the foreseeable future.

This observation has also been made by many prior re-

searchers [38, 50]. Their solutions have taken two forms. In

the first form, several solutions design new coding schemes

that reduce reconstruction traffic, but incur a higher storage

overhead [22, 50]. In the second form, the proposed so-

lutions place erasure encoded data in such a way that the

amount of data that needs to be read for the common failure

cases is kept small [24, 38].

In this work, we observe that there is a third way of

reducing the network bottleneck during recovery in erasure

coded storage: determining intelligently where the repair

takes place. In all existing repair schemes, the repair oper-

ation happens in a centralized location — the repair site —

which is either the server where the recovered chunk will

be placed, or the client that initiates the read request for the

lost data. We propose a distributed repair technique where

partial results are computed locally at the server hosting the

chunks. Then these results are aggregated to reconstruct the

missing chunk. This distributed technique may not appear to

be significant because the computational burden of repair in

erasure codes is minimal. However, the process of conveying

all the chunks to a single point in itself creates a bottleneck

and load imbalance on some network links. The process of

distributing the repair burden among multiple servers has the

benefit of removing such a bottleneck and load imbalance.

This forms the key innovation in our proposed system PPR.

It distributes the task of decoding among multiple servers, in

a fashion reminiscent of binomial reduction trees from the

High Performance Computing (HPC) world [45].

Because of a mathematical property of the repair op-

eration, this distribution means that the amount of traffic

coming out of any aggregator server is exactly half of the

sum of the traffics coming in from the two inputs, into the

aggregator server. The final destination of the repair traffic,

where the complete reconstructed data is finally available,

is not overloaded with network traffic in its incoming link.

Rather, with PPR, even the incoming link to that destination

server gets approximately as much traffic as the first ag-

gregator server. This mathematical property has the desired

effect of reducing the network transfer time during repair

from erasure coded storage.

4. Design: Partial Parallel Repair (PPR)

We present an efficient reconstruction technique that focuses

on reducing network transfer time during reconstruction.

PPR divides the entire repair operation into a set of partial

operations that are then scheduled to execute in parallel

on multiple servers. PPR reduces the pressure on the two

primary constrained resources, network capacity and disk

reads.

We address the reconstruction latency problem in two

steps; first, using the main PPR algorithm (Sec. 4.1), we

make single chunk reconstruction highly efficient. Second,

we speed up simultaneous reconstructions resulting from

multiple chunk failures3 by evenly apportioning the load of

these multiple reconstructions. The multiple reconstruction

scenario arises most commonly because of a hard drive fail-

3 Each individual chunk failure is still the only failure in its corresponding

stripe. Such single chunk failure in a stripe captures almost 99% of the

failure cases (Sec. 1).

ure. We discuss this aspect of the solution, which we call

multiple-PPR (m-PPR), in Sec. 5.

4.1 Efficient single chunk reconstruction: Main PPR

As discussed before, to reconstruct an erasured chunk, the

EC storage system needs to gather k other chunks and per-

form the required computation. This step often incurs high

latency because of the large volume of data transfer over a

particular link, namely, the one leading to the final destina-

tion, which becomes the bottleneck.

Based on the repair operation of RS code, we make the

following two observations that fundamentally drive the de-

sign of PPR:
• The actual reconstruction equation used for computing

the missing chunks (either data or parity), as shown in

Fig. 3b, is linear and the XOR operations (i.e., the addi-

tions) over the terms are associative.
• The multiplication by the scalar decoding coefficients or

a XOR between two terms do not increase the size of the

data. Thus, the size of all the terms that would be XORed,

as well as the size of the final reconstructed chunk, is the

same as the size of the original chunks that were retrieved

from different servers. For instance, let R = a1C1+a2C2

be the equation for reconstruction. Here a1, a2 are the

decoding coefficients and R denotes a missing chunk that

will be reconstructed from the existing chunks C1 and

C2. All individual terms in the above equation, e.g., C1,

C2, a1C1, and a2C2, will have the same volume of data

which is equal to the chunk size (e.g. 64MB).

These two observations lead to the fundamental design prin-

ciple of PPR: distribute the repair operation over a number

of servers that only computes a partial result locally and

in parallel, and then forward the intermediate result to the

next designated server en route to the final destination. The

servers involved in the distributed operations are the ones

that host the surviving chunks of that stripe. This design

ensures that the part of the data needed for reconstruction

is already available locally.

PPR takes a few logical timesteps to complete the recon-

struction operation, where in each timestep a set of servers

perform some partial repair operations to generate interme-

diate results in parallel. These partial operations constitute

either a scalar multiplication of the local chunk data by the

corresponding decoding coefficient 4 (this operation happens

only during the first logical timestep) or an aggregate XOR

operation between the received intermediate results from the

earlier servers. For example, in Fig. 2, chunk C1 is lost be-

cause of a failure in server S1. Server S7 is chosen as a new

host to repair and store C1. Now C1 can be reconstructed

using the equation: C1 = a2C2 + a3C3 + a4C4, where a2,

a3, and a4 are the decoding coefficients corresponding to

4 We use the term decoding coefficient in a generic way. During recon-

struction of a parity chunk for RS codes, an encoding operation may be

performed. In that case, such coefficients will be 1.

chunks C2, C3, and C4. In timestep 1, S2 sends its partial

result a2C2 to S3. In parallel, S4 sends its partial result

a4C4 to S7, while at the same time S3 also computes its own

partial result a3S3. In timestep 2, S3 sends its aggregated

(i.e. XORed) results to S7 reducing the overall network

transfer time by a factor of 1/3 or 33%. This behavior can

be explained as follows. Let the chunk size be C MB and

the available network bandwidth be BN MB/s. In traditional

reconstruction, 3C MB of data goes through a particular

link, resulting in a network transfer time of approximately

3C/BN sec. In PPR, in each timestep, only one chunk is

transferred over any particular link (since parallel transfers

have different source and destination servers). Thus, the net-

work transfer time in each timestep is C/BN sec, and since

there are two timesteps involved in this example, the total

network transfer time is 2C/BN . The number of timesteps

required in PPR can be generalized as ⌈log2(k + 1)⌉, as we

will elaborate next.

Figure 4: Data transfer pattern during traditional reconstruc-

tion for (6, 3) and (8, 3) RS coding

4.2 Reduction in network transfer time

Even though PPR takes a few logical timesteps to complete

the reconstruction process, in reality, it significantly reduces

the total reconstruction time. Essentially, PPR overlays a

tree-like reduction structure (also referred to as a Binomial

Reduction Tree in HPC [28, 45]) over the servers that hold

the relevant chunks for reconstruction. Fig. 4 shows more

examples of PPR-based reconstruction techniques for RS

codes (6,3) and (8,3) where network transfers are completed

in only three and four logical timesteps, respectively. Each

timestep takes C/BN amount of time where, C is the chunk

size and BN is the available bandwidth, which results in

a total network transfer time of 3C/BN and 4C/BN , re-

spectively. In comparison, traditional RS reconstruction for

RS (6,3) and (8,3) would bring six and eight chunks to a

particular server with a network transfer time of 6C/BN and

8C/BN respectively. Thus PPR can reduce network transfer

time by 50% in both cases. We introduce the following

theorem to generalize the observation.

THEOREM 1. For (k,m) RS coding, network transfer time

for PPR-based reconstruction is ⌈(log2(k + 1))⌉ × C/BN

as compared to k × C/BN for the original reconstruction

technique. Thus PPR reduces the network transfer time by a

factor of k
⌈(log2(k+1))⌉ .

Proof: PPR reconstruction: During reconstruction, in total

(k + 1) servers are involved, out of which k servers host

the relevant chunks and the remaining one is the repair site.

PPR performs a binary tree-like reduction where (k + 1)
servers are the leaf nodes of the tree. Completion of each

logical timestep in PPR is equivalent to moving one level

up towards the root in a binary tree, while reaching the root

marks the completion of PPR. Since the height of a binary

tree with (k+1) leaves is log2(k+1), PPR requires exactly

log2(k + 1) logical steps to complete when (k + 1) is a

power of two; the ceil function is used if that is not the

case. During each step, the network transfer time is C/BN

since the same amount C is being transferred on each link

and each link has bandwidth BN . Thus, the total network

transfer time is ⌈(log2(k + 1))⌉ × C/BN .

Baseline EC reconstruction: A total of k chunks, each of size

C, will be simultaneously retrieved from k servers. Thus the

ingress link to the repair server becomes the bottleneck. If

BN is the bandwidth of that ingress link, the total network

transfer time becomes k × C/BN .

Thus, PPR reduces the network transfer time by a factor of
k

⌈(log2(k+1))⌉ .

If k = 2n − 1, where n ∈ Z
+, then the network transfer

time is reduced by a factor of Ω(2
n

n
). This reduction in

network transfer time becomes larger for increasing values

of n, i.e., for larger values of k. Since larger values of k
(for a fixed m) can reduce the storage overhead of erasure

coded storage even further, coding with high values of k is

independently beneficial for storing large amounts of data.

However, it has not been adopted in practice mainly because

of the lengthy reconstruction time problem. �

Moreover, as an additional benefit, the maximum data

transfer over any link during reconstruction is also reduced

by a factor of approximately ⌈(log2(k + 1))⌉/k. In PPR,

the cumulative data transfer across all logical timesteps and

including both ingress and egress links is C×⌈log2(k+1)⌉.

This behavior can be observed in Fig. 4 which illustrates

PPR-based reconstruction technique for RS codes (6,3) and

(8,3). Such a reduction facilitates a more uniform utilization

of the links in the data center, which is a desirable property.

Network architecture: We assume the network to have

either a fat-tree [10] like topology, where each level gets

approximately full bisection bandwidth with similar network

capacity between any two servers in the data center, or a

VL2-like [20] architecture, which gives the illusion of all

servers connected to a monolithic giant virtual switch. These

architectures are the most popular choices in practice [9]. If

servers have non-homogeneous network capacity, PPR can

be extended to use servers with higher network capacity as

aggregators, since these servers often handle multiple flows

during reconstruction, as depicted in Fig. 4.

When is PPR most useful? The benefits of PPR become

prominent when network transfer is the bottleneck. More-

over, the effectiveness of PPR increases with higher values

of k as discussed before. Interestingly, we found that PPR

also becomes more attractive for larger chunk sizes. For

a given k, larger chunks tend to create higher contention

in the network. Nevertheless, for other circumstances, PPR

should be at least as good as traditional reconstruction since

it introduces negligible overhead.

PPR vs staggered data transfer: Since the reconstruction

process causes network congestion at the server acting as

the repair site, a straightforward approach to avoid con-

gestion could be to stagger data transfer, with the repair

server issuing requests for chunks one-by-one from other

servers. However, staggering data transfer adds unnecessary

serialization to the reconstruction process and increases the

network transfer time. The main problem with this approach

is that it avoids congestion in the network link to the repair

server by under-utilizing the available bandwidth of network

links. Thus, although simple and easy to implement, stag-

gered data transfer may not be suitable for scenarios where

reconstructions need to be fast, e.g., in case of degraded

reads. PPR decreases network congestion and simultane-

ously increases parallelism in the repair operation.

Compatibility with other ECs: Since the majority of the

practical erasure codes are linear and associative, PPR-

based reconstruction can be readily applied on top of them.

PPR can also be easily extended to handle even non-linear

codes, as long as the overall reconstruction equation can be

decomposed into a few independent and partial associative

operations.

4.3 Computation speed-up and reduced memory

footprint

PPR provides two additional benefits.

Parallel computations: PPR distributes the reconstruction

job among multiple servers that perform partial reconstruc-

tion functions in parallel. For example, scalar multiplication

with decoding coefficients5 and some aggregating XOR op-

erations are done in parallel, as opposed to traditional serial

computation at the repair site. For RS(k,m) code Table 2

highlights the difference between PPR and traditional RS

reconstruction, in terms of the computation on the critical

path.

Reduced memory footprint: In traditional RS reconstruc-

tion, the repair site collects all the k necessary chunks and

performs the repair operation on those chunks. Since the

processor actively performs multiplication or bitwise XOR

operations on these k chunks residing in memory, the mem-

ory footprint of such reconstruction operation is on the order

of kC, where C is the chunk size. In PPR, the maximum

bound on memory footprint in any of the involved servers

is C × ⌈log2(k + 1)⌉, because a server deals with only

⌈log2(k + 1)⌉ chunks at most.

5 In Cauchy-Reed Solomon coding, multiplications are replaced by XOR

operations [32]

PPR reconstruction computation Traditional RS reconstruction computa-

tion

Creation of the decoding matrix + Creation of the decoding matrix +
One Galois-field multiplication with coeffi-

cients (since parallel at multiple servers) +
k Galois-field multiplications with co-

efficients +
ceil(log2(k + 1)) number of XOR opera-

tions (done by aggregating servers)

k number of XOR operations

Table 2: Faster reconstruction: Less computation per server

because of parallelism in PPR technique

4.4 Reducing disk IO with in-memory chunk caching

To reduce the reconstruction time as much as possible, in

addition to optimizing network transfer, we also try to re-

duce disk IO time. Although read operations from multiple

servers can be done in parallel, disk read still contributes a

non-trivial amount of time to reconstruction, up to 17.8% in

the experiment, as shown in Fig. 1. We design an in-memory

least recently used (LRU) cache that keeps most frequently

used chunks in each server. As a result, the chunk required

for reconstruction can be obtained from memory, without

incurring the cost of reading it from disk. In addition, PPR

maintains a usage profile for chunks that are present in the

cache using the associated timestamp. The usage profile

can influence the decision regarding which chunk failures

should be handled urgently. A chunk that is frequently used,

and hence in the cache, should be repaired urgently. Even

though caching helps reducing the total reconstruction time,

the technique itself is orthogonal to the main PPR technique.

Caching can also be used with traditional repair techniques

to reduce IO time.

5. Multiple Concurrent Repairs: m-PPR

In any reasonably sized data center, there can be mul-

tiple chunk failures at any given time because of either

scattered transient failures, machine maintenance, software

upgrade, or hard disk failures. Although proactive repairs

for such failures are often delayed (e.g., by 15 minutes by

Google [19]) in anticipation that the failure was transient,

multiple simultaneous reconstructions can still happen at

any point in time. A naive attempt to perform multiple

overlapping reconstructions may put pressure on shared

resources, such as network and disk IO, leading to poor re-

construction performance. We design m-PPR, an algorithm

that schedules multiple reconstruction-jobs in parallel while

trying to minimize the competition for shared resources

between multiple reconstruction operations. At the core,

each repair job uses the PPR-based reconstruction technique

described earlier. Scheduling of multiple reconstructions

through m-PPR is handled by a Repair-Manager (RM),

which runs within a centralized entity (e.g. the Meta-Server

in our Quantcast File System based implementation).

The RM keeps track of various information for all the

servers, such as whether a chunk is available in its in-

memory cache, the number of ongoing repair operations

scheduled on the server, and the load that users impose

Algorithm 1 m-PPR: Scheduling algorithm for multiple reconstructions

1: for all missingChunk ∈ missingChunkList do

2: hosts← GETAVAILABLEHOSTS(missingChunk);
3: reconstSrc← SELECTSOURCES(hosts); //Choose best sources
4: reconstDst ← SELECTDESTINATION(hosts, allServers); //Choose

the best destination
5: // Schedule a PPR-based single reconstruction
6: SCHEDULERECONSTRUCTION(reconstSrc, reconstDst);
7: // Update state to capture the impact of scheduled reconstruction
8: UPDATESERVERWEIGHTS();
9: end for

10: // Choose k out of k + m− 1 available sources
11: procedure SELECTSOURCES(hosts)
12: sortedHosts← SORTSOURCES(hosts);
13: selectedSources← [];
14: while selectedSources.size ≤ k do

15: anotherSourceServer← sortedHosts.pop();
16: selectedSources.add(anotherSourceServer);
17: end while

18: return selectedSources;
19: end procedure

20: //Find a destination server as repair site
21: procedure SELECTDESTINATION(hosts, allServers)
22: ifdegraded read return Client; //Degraded read:client is destination
23: // For reliability, exclude existing hosts
24: possibleDsts ← FINDPOSSIBLEDESTINATIONS(hosts,allServers);
25: sortedDsts← SORTDESTINATIONS(possibleDsts);
26: chosenDst ← sortedDsts.pop(); //Choose the best repair site
27: return chosenDst

28: end procedure

on the servers. Based on these information, the RM uses

greedy heuristics to choose the best source and destination

servers for each reconstruction job. For the source servers,

m-PPR selects the k best servers out of the remaining

k + m − 1 servers. For the destination server, it chooses

one out of the available N − (k + m) servers, where N
is the total number of available servers. In practice, the

number of possible destination servers is further constrained

by various factors. For example, some applications might

require the chunks corresponding to one data stripe to be

in close network proximity. Others might want affinity of

some data to specific storage types, such as SSD. Some

applications might want to avoid servers with identical

failure and upgrade domains [14]. The RM calculates, for

each potential server, a source weight and a destination

weight as follows:

wsrc = a1(hasCache)− a2(#reconstructions)−

a3(userLoad) (2)

wdst = −[b1(#repairDsts) + b2(userLoad)] (3)

Here ais, bis in Eq.(2) and Eq.(3) are the coefficients de-

noting the importance of various parameters in the source

and destination weight equations. The hasCache is a bi-

nary variable denoting whether the relevant chunk is already

present in the in-memory cache of that particular server. The

number of reconstructions (#reconstructions) in Eq.(2)

represents how many reconstruction jobs are currently be-

ing handled by the server. userLoad measures the network

load handled by that server as part of regular user requests.

The value of #reconstructions gives an indication of

the maximum possible network bandwidth utilization by

reconstruction operation at that server. In Eq.(3), the number

of repair destinations (#repairDsts) represents how many

repair jobs are using this server as their final destination.

Intuitively, these source and destination weights represent

the goodness of a server as a source or destination candidate

for scheduling the next repair job.

Choosing the coefficients: We calculate the ratio of a1
and a2 as α(ceil(log2(k + 1)))/β. Here α represents the

percentage reduction in the total reconstruction time, if

a chunk is found in the in-memory cache of a source

server. β denotes the ratio of network transfer time to the

total reconstruction time in PPR. Intuitively, we compare

how many simultaneous reconstructions would be onerous

enough to offset benefit of having a chunk in the cache. We

calculate the ratio a2 and a3 as C × ⌈log2(k)⌉. Essentially,

from userLoad we calculate an equivalent number of

PPR-based reconstruction operations that would generate

similar traffic. The ratio of b1 and b2 is identical to this.

For simplicity, we set a2 and b1 to one and calculate other

coefficients. For example, for RS(6, 3) code, 64MB chunk

size, and cluster with 1Gbps network we calculate values of

a1, a2, and a3 to be 0.36, 1.0, and 0.005 when userLoad

is measured in MB.

Scheduling: The RM maintains a queue with missing

chunk identifiers. To schedule reconstruction of multiple

chunks in a batch using m-PPR algorithm, it pops up

items one by one from the head of the queue and greedily

schedules reconstruction jobs for each of those missing

chunks. The RM uses Eq.(2) to calculate goodness score

for servers holding relevant chunks of the missing data item

and iteratively selects the best k source servers to schedule

a PPR job. If fewer than k source servers are available, the

RM skips that reconstruction and puts it back at the end of

the queue for re-trial. The RM also needs to find a suitable

destination server to schedule a repair job. However, not all

available servers in the data center are good candidates for

the destination server because of reliability reasons. The

servers already holding the corresponding data or parity

chunks from the same stripe and the ones in the same

failure domain6 or upgrade domain7 should be avoided for

reliability reasons. For the remaining destination candidates,

the RM calculates a weight to capture the current load on

that server using Eq.(3). Finally, the most lightly loaded

server is selected as the final destination for that repair

job. After scheduling a job, all the weights are updated to

reconsider the impact on the shared resources. This entire

process is illustrated in Algo. 1.

6 Servers that can fail together e.g., within a rack.
7 Servers that are likely to be down at the same time because of the software

or hardware upgrades.

The overall complexity of m-PPR for scheduling a re-

construction is O{N log(N)}. Again, N is the number of

possible destination servers and also N ≫ k,m.

Staleness of information: Some of the parameters used in

Eq.(2) and Eq.(3), such as hasCache and userLoad can be

slightly stale as RM collects these metrics through heart-

beats from the servers. Such staleness is limited by the fre-

quency of heartbeats (5 sec in our setup). Thus, such minor

staleness does not affect the usability of m-PPR. Moreover,

RM monitors all the scheduled reconstructions and, if a job

does not finish within a threshold time, RM reschedules it

for choosing a new set of servers. Essentially, m-PPR is a

greedy algorithm because for each reconstruction it chooses

the best server combination possible at that point.

Beyond a centrally managed server: The scheduling load

in m-PPR can be easily distributed over multiple RMs. Each

one of these RMs would be responsible for coordinating

repairs of a subset of chunk failures. In a more distributed

architecture, one of the source servers can also take the

responsibility of choosing a new destination server and dis-

tribute a repair plan to coordinate the repair with other peers.

6. Design and Implementation

6.1 Background: QFS architecture

Quantcast File System (QFS) is a popular high-performance

distributed file system that provides stable RS-based erasure

coding for lower storage overhead and higher reliability [30].

QFS evolved from the Kosmos File System originally de-

veloped at Microsoft. The QFS architecture has three major

components, as illustrated in Fig. 5a. A centralized Meta-

Server manages the file system’s directory structure and

how RS chunks are mapped to physical storage locations.

A Chunk Server runs on each machine where the data is

hosted and manages disk IO. A Client refers to an entity

that interfaces with the user requests. During read (or write)

operation, a Client communicates with the Meta-Server to

identify which Chunk Server holds (or will hold, in the case

of write) the data, then directly interacts with a Chunk Server

to transfer the data. Chunk Servers periodically send heart-

beat messages to the Meta-Server and the Meta-Server peri-

odically checks the availability of the chunks (monitoring).

If the Meta-Server detects a disk or server failure (through

heartbeat), or a corrupted or a missing chunk (through mon-

itoring), it starts the repair process, first designating one

Chunk Server as a repair site and then performing the tra-

ditional repair process. In case of degraded read, where the

client identifies a missing chunk while trying to read, the

reconstruction happens in the critical path initiated by the

client, which again first gathers k chunks before executing a

decoding operation.

6.2 PPR protocol

In this section, we elaborate on the relevant implementation

details to enable PPR in QFS.

Reconstruction during regular repairs: For a regular re-

pair, the Meta-Server invokes a Repair-Manager (RM). The

RM selects k out of the remaining k+m− 1 chunks for the

reconstruction of the missing chunk. This selection is done

by the m-PPR algorithm (Algo. 1). The RM first analyzes

which chunks are available for repair and computes the de-

coding matrix accordingly. From the decoding matrix, the

RM calculates decoding coefficients corresponding to each

participating chunk. The RM distributes these coefficients

along with a repair plan to only k/2 Chunk Servers (e.g.,

S2, S4, S6 in Fig. 5b) and also to the repair site.

In Fig. 5b, a Chunk Server S4 receives a plan command<
x2:C2:S2, x3:C3:S3 > from the RM, where xi’s are the de-

coding coefficients, Ci’s are the chunk identifiers (chunkId),

and Si’s are the corresponding Chunk Servers. This plan in-

dicates S4 would aggregate partial results from downstream

peers S2 and S3. Therefore, S4 sends requests < x2:C2 >
and < x3:C3 > to these servers indicating S2 and S3 would

return results after reading their local chunks C2 and C3.

Before returning the results, servers S2 and S3 also multiply

chunks C2 and C3 by their corresponding coefficients x2

and x3, respectively. As part of the same repair plan, S4

also receives a request < x4:C4 > from its upstream peer

(in this case the repair site). Thus S4 schedules a local

disk read for chunk C4, which is then multiplied by the

coefficient x4. S4 waits for results from S2 and S3 and

performs incremental XORs before replying to its upstream

peer with an aggregated result.

The repair site aggregates the results by XORing all the

results coming from the downstream Chunk Servers to re-

construct the missing chunk and writes back to the disk

at the end of the operation. Finally, this destination Chunk

Server sends a message to the RM indicating a successful

completion of the repair operation.

Reconstruction during degraded reads: If a degraded

read operation triggers the PPR-based reconstruction, a

Client acts as the repair site and informs the RM about a

missing chunk. Then the RM distributes a repair plan with

the highest priority.

Tail completion: The number of flows, as well as the num-

ber of nodes involved in PPR, is exactly the same as in

traditional repair. It is equal to k. Since k is small in prac-

tice (between 6 and 12), the probability of encountering a

relatively slow node is small in both traditional repair and

PPR. Nevertheless, the RM uses node usage statistics (CPU

and I/O counters collected with the Heartbeat messages) to

de-prioritize the slow nodes before creating the repair plan.

If reconstruction does not complete within a certain time

threshold (because of unpredictable congestion or failures),

(a) Three major components in the QFS architec-

ture

(b) Message exchanges among Chunk Servers and the RM for RS(6, 3) recon-

struction using PPR

Figure 5: (a) QFS architecture and (b) PPR protocol timeline

Figure 6: Protocol for LRU cache. Updates are piggybacked

with heartbeat messages

the RM reschedules the reconstruction process with a new

repair plan.

6.3 IO pipelining, caching, and efficient use of memory

Overlapping disk IO with network transfer: Disk IO

(read/write) time is another dominant component in the

overall reconstruction time. Aggregation Chunk Servers that

had posted downstream requests (e.g., S2, S4, S6), read

different chunks from disk and wait8 for data transfer from

their downstream peer Chunk Servers to complete. Then

they apply the aggregating XOR operation and send the

result to further upstream servers in the tree. To increase

parallelism, aggregation Chunk Servers schedule IO-reads

in parallel with data transfer from network.

Caching: We attempt to further reduce the impact of IO-

read time by introducing an in-memory caching mechanism

in Chunk Servers, as described in Section 4.4. When choos-

ing k out of the remaining k + m − 1 Chunk Servers for

a reconstruction operation in m-PPR protocol, RM gives

higher priority to hot chunks but tries to avoid very-hot

chunks in order to minimize the impact on application per-

formance. However, for multiple simultaneous reconstruc-

tions, we found that making sure that these reconstructions

use disjoint servers has a greater benefit than cache-aware

8 Because network transfer of a chunk usually takes longer than IO time.

server assignment, since in general data centers are con-

strained by network resources.

6.4 Implementation details

The choice of a codebase: We implemented our technique

with QFS [5] written in C++. Among several alternatives, we

chose QFS because of its simpler architecture and reason-

able popularity in the community. However, our PPR tech-

nique is general enough to be applicable to other widely used

erasure coded storage systems. Specifically the architecture

of HDFS with erasure coding [3] is almost identical to that

of QFS, and therefore PPR is directly applicable. In addi-

tion, our technique can also be applied to Ceph [1], another

popular distributed storage system that supports erasure cod-

ing. In Ceph, clients use a pseudo-random mapping func-

tion called CRUSH [49] to place and access data chunks,

rather than relying on a centralized meta server. Nonethe-

less, it does have a centralized entity, called ceph monitor

(ceph-mon) that knows the layout of Object Storage Devices

(OSDs) (equivalent to Chunk Servers in QFS). ceph-mon is

responsible for checking the health of each OSD, letting the

newly joined OSDs know the topology, etc. Thus, we can

augment such an entity with RM to enable PPR. Moreover,

we can also augment any OSD with RM function, since

all OSDs know where a given chunk is (or will be) located

based on the pseudo-random mapping function.

Changes made to the codebase: To implement PPR, we

have made the following changes to the QFS codebase. First,

we extended the QFS code to make the chunk size con-

figurable; QFS uses a fixed chunk size of 64MB. Second,

we implemented PPR decoding operations using Jerasure

and GF-Complete [33] libraries, which were not the defaults

in QFS. Jerasure allows a configurable set of coding pa-

rameters, while the default in QFS only supports the (6, 3)

code. Third, we augmented the Meta-Server with the RM

to calculate decoding coefficients, create a repair plan, and

distribute it to Chunk Servers. The RM also keeps track

of the cached chunks at Chunk Servers. Fourth, the Chunk

Server’s state machine was modified to incorporate the PPR

protocol to communicate with the peers and the RM, and

search for a chunk in its memory cache before attempting

to perform disk IO. Lastly, it is worthwhile to note that

our implementation of PPR-based reconstruction is fully

transparent to the end user.

7. Evaluation

In this section we evaluate our implementation of PPR on

top of QFS and compare the repair performance with QFS’s

traditional Reed-Solomon-based reconstruction technique.

Our primary metric is the reduction in repair time. We also

layer PPR on top of two other popular and practical erasure

codes, namely LRC [22] and Rotated RS [24], and evaluate

the effectiveness of PPR when used with these codes.

Experimental setup: We use two OpenStack [4] clusters—

a 16 host lab cluster (SMALLSITE) and an 85 host pro-

duction cluster (BIGSITE), to demonstrate the scalability

advantages of PPR. In SMALLSITE, each machine belongs

to one rack and has 16 physical CPU cores with 24GB

RAM. Each core operates at 2.67GHz. They are connected

to a 1Gbps network. Each VM instance runs Ubuntu 14.04.3

with four vcpus, 8GB memory, and 80GB of storage space.

In BIGSITE, the machines have dual 10-core 2.8GHz CPUs

and are connected by two bonded 10G NICs, with each NIC

going to an independent ToR (Top-of-Rack) switch. How-

ever, an iperf test showed an average bandwidth of about

1.4Gbps between any two VMs (such lower than expected

bandwidth is due to the well-know VxLAN issues, which

we do not discuss here for brevity). For both proactive repair

and degraded read experiments on the SMALLSITE, we kill

a single Chunk Server, which affects a small number of

chunks. For each experiment, we report the mean values

computed from 20 runs. We measure repair time on the RM

as the difference between the time when it starts a repair

process and the time when it is notified by a completion

message sent from the repair site. For degraded reads, we

measure the latency as the time elapsed from the time instant

when a client posts a read request to the time instant when it

finishes reconstructing the lost chunk(s).

7.1 Performance improvement with main PPR

7.1.1 Improving regular repair performance

Fig. 7a illustrates the percentage reduction in the repair time

achieved by PPR compared to the baseline traditional RS

repair technique, for four different codes: (6, 3), (8, 3), (10,

4), and (12, 4), each with chunk sizes of 8MB, 16MB,

32MB, and 64MB. PPR reduces the repair time quite sig-

nificantly. For a higher value of k the reduction is even

higher and reaches up to 59%. This is mainly because in

PPR the network transfer time increases with log(k), as

opposed to increasing linearly in k as in the traditional RS

repair (Sec. 4.2). Another interesting observation is that PPR

becomes more attractive for higher chunk sizes. To investi-

gate this further, we performed an experiment by varying

the chunk size from 8MB to 96MB for the (12, 4) RS code.

Fig. 7b illustrates that the benefit of PPR is higher at higher

chunk sizes, e.g., 53% at 8MB while 57% at 96MB. This

is because as the chunk size grows, it increases the network

pressure on the link connected to the repair site, leading to a

higher delay. PPR can alleviate such a situation through its

partial and parallel reconstruction mechanism. It should be

noted that many practical storage systems use big chunks so

that relevant objects (e.g., profile photos in a social network-

ing applications) can be contained within a single chunk,

thereby avoiding the need to fetch multiple chunks during

user interaction.

7.1.2 Improving degraded read latency

Recall that a degraded read happens when a user submits a

read request for some data that is currently unavailable. As

a result, the requested chunk must be reconstructed on the

fly at the client before the system replies to the user request.

Fig. 7c illustrates how PPR can drastically reduce the de-

graded read latency for four common RS coding parameters:

(6, 3), (8, 3), (10, 4), and (12, 4), and for two different chunk

sizes: 8MB and 64MB. Fig. 7c shows that the reduction in

the degraded read latency becomes more prominent for the

codes with higher values of k. Moreover, it is also noticeable

that at a higher chunk size PPR provides even more benefits

because of the reason discussed in Section 7.1.1.

7.2 Improving degraded reads under constrained

bandwidth

PPR not only reduces the reconstruction time but also

reduces the maximum amount of data transferred to any

Chunk Server or a Client involved in the reconstruction

process. In a PPR-based reconstruction process, a partici-

pating Chunk Server needs to transfer only ⌈(log2(k + 1))⌉
number of chunks over its network link, as opposed to k
number of chunks in a traditional repair. This becomes

a desirable property when the network is heavily loaded

or under-provisioned. In the next experiment, we use the

Linux traffic control implementation (tc) to control the

network bandwidth available to all the servers and measure

the degraded read throughput. As shown in Fig. 7d, as we

decrease the available bandwidth from 1Gbps to 200Mbps,

the degraded read throughput with the traditional RS recon-

struction rapidly drops to 1.2MB/s and 0.8MB/s for RS(6,

3) and RS(12, 4), respectively. Since, network transfers are

distributed in PPR, it achieves higher throughput—8.5MB/s

and 6.6MB/s for RS(6, 3) and RS(12, 4), respectively. With

a relatively well-provisioned network (1Gbps), the gains of

PPR are 1.8X and 2.5X , while with the constrained band-

width (200Mbps), the gains become even more significant,

almost 7X and 8.25X .

7.3 Benefit from caching

In this section we evaluate the individual contribution of

the distributed reconstruction technique and caching mecha-

(a) Percentage reduction in repair time with

PPR over baseline Reed-Solomon code for

different chunk sizes and coding parameters

(b) Traditional repair vs. PPR using RS (12,

4) code. PPR’s benefit becomes more obvi-

ous as we increase the chunk size

(c) Improvement in degraded read latency

(d) Degraded read throughput under con-

strained bandwidth

(e) Percentage reduction: PPR without

chunk caching vs. PPR with chunk caching.

The baseline is standard RS code.

(f) Improved computation time during recon-

struction

Figure 7: Performance evaluation on SMALLSITE with a small number of chunk failures

nism to the overall benefit of PPR. The former reduces the

network transfer time, while the latter reduces the disk IO

time. Fig. 7e shows that chunk caching is more useful for

lower values of k (e.g., (6, 3) code). For higher values of

k or for higher chunk sizes, the benefit of caching becomes

marginal because the improvement in the network transfer

time dominates that of the disk IO time. For instance, for

k = 12 and 64MB chunk size, the caching mechanism

provides only 2% additional savings in the total repair time.

However, the caching mechanism can reduce the demand on

disk IO, making it available for other workloads. Knowing

the exact access patterns of data chunks will help us identify

better caching strategies and choose the right cache size. We

leave such exploration in realistic settings for future work.

7.4 Improvement in computation time

Now we compare PPR’s computation to the serial com-

putation in a traditional RS reconstruction, i.e., a default

QFS implementation with the Jerasure 2.0 library [33]. Note

that during reconstruction, either decoding (when a data

chunk is lost) or encoding (when a parity chunk is lost)

can happen (Fig. 3b). The amounts of computation required

by RS encoding and decoding are almost identical [34].

The only difference is the extra matrix inversion involved

in decoding. During our experiments we randomly killed

a Chunk Server to create an erasure. Since, for the codes

we used, there are more data chunks than parity chunks

(k > m), decoding happens with higher probability than

encoding. We report the average numbers and do not explic-

itly distinguish based on the type of the lost chunk. Fig. 7f

shows that PPR can significantly speed up the computation

time using its parallelism. These gains are consistent across

different chunk sizes. Moreover, the gain is higher for higher

values of k because the critical path in PPR needs fewer

multiplications and XOR operations compared to traditional

decoding. Existing techniques to reduce computation time

for erasure codes using GPUs [15] or hardware acceleration

techniques [11, 23] are complementary to PPR. They can

serve as drop-in replacements to the current Jerasure library

used by PPR. However, it should be noted, repair in erasure-

coded storage is not a compute-bound task, but a network-

bound task. Nevertheless, PPR helps to reduce the overall

computation time.

7.5 Evaluation with simultaneous failures (m-PPR)

In this section we evaluate the effectiveness of m-PPR in

scheduling multiple repairs caused by simultaneous chunk

failures. We control the number of simultaneous chunk fail-

ures by killing the appropriate number of Chunk Servers. We

performed this experiment in the BIGSITE, where we placed

the Meta-Server and the Client on two hosts and ran 83

Chunk Servers on the rest. The coding scheme was RS(12, 4)

with 64MB chunks. Fig. 8 shows that our technique provides

a significant reduction (31%–47%) in total repair time com-

Figure 8: Comparison of total repair time for simultaneous

failures triggered by Chunk Server crash

pared to the traditional RS repair. However, the benefit seems

to decrease with a higher number of simultaneous failures.

This is because, in our testbed configuration, the network

links to the host servers that are shared between multiple

repairs tend to get congested for large number of failures.

Consequently m-PPR has less flexibility in choosing the

repair servers. If the testbed has more resources (more hosts,

higher network capacity, etc.), m-PPR will perform much

better for the scale of simultaneous failures considered in our

experiments. However, it should be noted that the main PPR

technique does not reduce the total amount of data trans-

ferred over the network during repair. Rather it distributes

the network traffic more uniformly across network links. For

a large number of simultaneous failures, if the repair sites are

spread across the data center, m-PPR would provide reduced

benefit compared to the single failure case. This is because

the simultaneous repair processes on multiple nodes already

spread the network traffic more evenly compared to the case

of a single failure. Overall, the result validates that m-PPR

can effectively handle multiple repairs and minimizes the

competition for shared resources (e.g., network and disk) for

a moderate number of simultaneous failures.

7.6 Scalability of the Repair-Manager

The Repair-Manager (RM) creates and distributes a repair

plan to a few Chunk Servers that are selected as the aggre-

gators. We investigate if the RM can become the bottleneck

at large scale. As detailed in Sec. 5, the m-PPR schedul-

ing algorithm has a time complexity of O(Nlog(N)) for

scheduling each repair, where N is the number of possible

destination servers. N is usually a small fraction of the

total number of machines in the data center. Additionally,

to handle a data chunk failure, RM computes the decoding

coefficients, which involves a matrix inversion. Following

this, RM sends (1 + k
2) messages to distribute the plan to

the aggregation Chunk Servers. Not surprisingly, we observe

that the time for coefficient calculation is negligible. Specif-

ically for RS (6, 3) and (12, 4) codes, we measured the time

period between the instant when the plan is created to the

instant when the RM finishes distributing the plan for a sin-

gle repair. It took on average 5.3ms and 8.7ms respectively.

Thus for the two coding schemes, one instance of the RM

is capable of handling 189 repairs/sec and 115 repairs/sec,

respectively. Further, as discussed in Sec. 5, the planning

capability can be easily parallelized by using multiple RM

instances, each of which can handle disjoint sets of repairs.

7.7 Compatibility with other repair-friendly codes

PPR is compatible with most of the existing erasure coding

techniques. Its applicability is not limited to only RS codes.

We demonstrate its compatibility by applying it on top of

two popular erasure coding techniques—Local Reconstruc-

tion Code (LRC) [22] and Rotated RS code [24]. These are

the state-of-the-art codes targeted for reducing the repair

time.

Figure 9: PPR repair technique can work with LRC and

Rotated RS and can provide additional improvement in

repair time

Improvements over LRC code: Huang et al. introduced

Local Reconstruction Code (LRC) in Windows Azure Stor-

age to reduce the network traffic and disk IO during the

reconstruction process [22]. LRC stores additional local par-

ities for subgroups of chunks, thereby increasing the storage

overhead for comparable reliability. For example, a (12, 2,

2) LRC code uses two global parities and two local pari-

ties, one each for a subgroup of six chunks. If one chunk

in a subgroup fails, LRC needs only six other chunks to

reconstruct the original data compared to 12 in RS (12, 4)

code. Papailiopoulos et al. [31] and Sathiamoorthy et al. [42]

also proposed Locally Repairable Codes that are concep-

tually similar. For our experiments, we emulated a (12, 2,

2) LRC code that transfers six chunks over the network, in

the best case, to one Chunk Server in order to reconstruct a

missing chunk. Then we applied PPR-based reconstruction

technique for LRC to create LRC+PPR.

In LRC+PPR only three chunks are transferred over any

particular network link. In Fig. 9, for a 64MB chunk size,

PPR-based reconstruction on (12, 4) RS code was faster than

a (12, 2, 2) LRC code reconstruction because the maximum

number of chunks that must go through any particular net-

work link is only 4C for PPR as opposed to 6C in case

of LRC, where C is the chunk size. More interestingly,

LRC+PPR version performs even better resulting in 19%

additional reduction, compared to using LRC alone. Even

in the worst case, for the LRC+PPR only three chunks are

transferred over any particular network link.

Improvements over Rotated RS code: Khan et al. [24]

proposed Rotated RS code that modifies the classic RS code

in two ways: a) each chunk belonging to a single stripe

is further divided into r sub-chunks and b) XOR on the

encoded data fragments are not performed within a row but

across adjacent rows. For Rotated RS code, the repair of r
failed chunks (called “fragments” in [24]), requires exactly
r
2 (k + ⌈(k

m
)⌉) other symbols when r is even, compared to

r × k data fragments in the RS code. On an average, for a

RS(12, 4) code and r = 4 (as used by the authors [24]),

the reconstruction of a single chunk requires approximately

nine other chunks, as opposed to 12 chunks in traditional

RS codes. However, the reconstruction is still performed

after gathering all the necessary data on a single Chunk

Server. As can be observed from Fig. 9, PPR with RS code

outperforms Rotated RS. Moreover, the combined version

Rotated RS+PPR performs even better and results in 35%
additional reduction compared to the traditional RS repair.

7.8 Discussion

It is worthwhile to discuss whether emerging technologies,

such as the zero-copy-based high throughput networks

(e.g., Remote Direct Memory Access (RDMA)), would

remove the network bottleneck. However, it should be noted

that other system components are also getting better in

performance. For example, Non-Volatile Memory Express

(NVMe) and hardware-accelerator-based EC computation

have the potential to make the non-network components to

be even faster. Moreover, application data is likely to grow

exponentially putting even more pressure on the future data

center network. Thus, techniques like PPR that attempt to

reduce the network bottleneck would still be relevant.

8. Related Work

Quantitative comparison studies have shown that EC has

lower storage overhead than replication while providing bet-

ter or similar reliability [41, 48]. TotalRecall [12] dynami-

cally predicts the availability level of different files and ap-

plies EC or replication accordingly. Publications from Face-

book [29] and Microsoft [22] discuss the performance opti-

mizations and fault tolerance of their EC storage systems.

A rich body of work targets the reconstruction problem

in EC storage. Many new codes have been proposed to re-

duce the amount of data needed during reconstruction. They

achieve this either by increasing the storage overheads [18,

22, 31, 37], or under restricted scope [21, 24, 47, 51]. We

have already covered the idea behind Local Reconstruc-

tion Codes [22] and the conceptually identical Locally Re-

pairable Codes [31, 42] when presenting our evaluation of

PPR coupled with these codes. The main advantage of our

technique compared to these is that PPR neither requires

additional storage overhead nor mandates a specific coding

scheme. Moreover, our technique is fully compatible with

these codes and can provide additional benefits if used to-

gether with them, as shown in our evaluation. Another body

of work suggests new coding schemes to reduce the amount

of repair and IO traffic, but comes with restricted settings.

Examples are Rotated RS [24] and Hitchhiker [38]. Yet

another class of optimized recovery algorithms are EVEN-

ODD [51] and RDP codes [47]. However, they support only

two parities, making them less useful for many systems [38].

In contrast, PPR can work with any EC code.

In a different context, Silberstein et al. [44] proposed

that delaying repairs can lead to bandwidth conservation and

marginally increases the performance of degraded reads as

well. However, such a policy decision will not be applicable

to many scenarios because it puts the reliability of the data

at risk. Xia et al. [50] proposed a hybrid technique using

two different codes in the same system, i.e., a fast code and

a compact code. They attempted to achieve faster recovery

for frequently accessed files using the fast code, and to get

lower storage overhead for the less frequently accessed files

using the compact code. This technique is orthogonal to

our work, and PPR can again be used for both fast and

compact codes to make reconstruction faster. In the context

of reliability in replicated systems, Chain Replication [46]

discusses how the number of possible replica sets affects

the data durability. Carbonite [16] explores how to improve

reliability while minimizing replica maintenance under tran-

sient failures. These are orthogonal to PPR. Lastly, several

papers evaluate advantages of deploying EC in distributed

storage systems. OceanStore [25, 40] combines replication

and erasure coding for WAN storage to provide highly scal-

able and durable storage composed of untrusted servers.

9. Conclusion

In this paper we present a distributed reconstruction tech-

nique called PPR, for erasure coded storage. This achieves

reduction in the time needed to reconstruct missing or cor-

rupted data chunks, without increasing the storage require-

ment or lowering data reliability. Our technique divides the

reconstruction into a set of partial operations and schedules

them in parallel using a distributed protocol that overlays

a reduction tree to aggregate the results. We introduce a

scheduling algorithm called m-PPR for handling concurrent

failures that coordinates multiple reconstructions in parallel

while minimizing the conflict for shared resources. Our ex-

perimental results show PPR can reduce the reconstruction

time by up to 59% for a (12, 4) Reed-Solomon code and

can improve the degraded read throughput by 8.25X, which

can be directly perceived by the users. Our technique is

compatible with many existing codes and we demonstrate

how PPR can provide additional savings on latency when

used with other repair-friendly codes.

Acknowledgments

We thank all the reviewers and our shepherd Prof. Lorenzo

Alvisi for their constructive feedback and suggestions.

References

[1] Ceph http://ceph.com/.

[2] Google Colossus File System:

http://static.googleusercontent.com/media/research.google.com

/en/university/relations/facultysummit2010/

storage architecture and challenges.pdf.

[3] Erasure Coding Support inside HDFS:

https://issues.apache.org/jira/browse/HDFS-7285.

[4] OpenStack: Open source software for creating private and

public clouds:

http://www.openstack.org/.

[5] Quantcast File System http://quantcast.github.io/qfs/.

[6] OpenStack Object Storage (Swift):

http://swift.openstack.org.

[7] Big Data and What it Means:

http://www.uschamberfoundation.org/bhq/big-data-and-

what-it-means.

[8] Yahoo Cloud Object Store:

http://yahooeng.tumblr.com/post/116391291701/yahoo-

cloud-object-store-object-storage-at.

[9] A. Akella, T. Benson, B. Chandrasekaran, C. Huang,

B. Maggs, and D. Maltz. A universal approach to data center

network design. In ICDCN, 2015.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. 2008.

[11] L. Atieno, J. Allen, D. Goeckel, and R. Tessier. An adaptive

reed-solomon errors-and-erasures decoder. In ACM/SIGDA

FPGA, 2006.

[12] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker.

Total recall: System support for automated availability man-

agement. In NSDI, 2004.

[13] k. Björck and V. Pereyra. Solution of vandermonde systems

of equations. Mathematics of Computation, 1970.

[14] B. Calder, J. Wang, A. Ogus, N. Nilakantan, et al. Windows

azure storage: a highly available cloud storage service with

strong consistency. In SOSP, 2011.

[15] X. Chu, C. Liu, K. Ouyang, L. S. Yung, H. Liu, and Y.-

W. Leung. Perasure: a parallel cauchy reed-solomon coding

library for gpus. In IEEE ICC, 2015.

[16] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,

M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient

replica maintenance for distributed storage systems. In NSDI,

2006.

[17] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and

K. Ramchandran. Network coding for distributed storage

systems. IEEE Transactions on Information Theory, 2010.

[18] K. S. Esmaili, L. Pamies-Juarez, and A. Datta. Core: Cross-

object redundancy for efficient data repair in storage systems.

In IEEE International Conference on Big Data, 2013.

[19] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,

L. Barroso, C. Grimes, and S. Quinlan. Availability in globally

distributed storage systems. In OSDI, 2010.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a

scalable and flexible data center network. In SIGCOMM,

2009.

[21] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang. Nccloud: applying

network coding for the storage repair in a cloud-of-clouds. In

FAST, 2012.

[22] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,

J. Li, and S. Yekhanin. Erasure coding in windows azure

storage. In ATC, 2012.

[23] H. M. Ji. An optimized processor for fast reed-solomon

encoding and decoding. In IEEE ICASSP, 2002.

[24] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang.

Rethinking erasure codes for cloud file systems: minimizing

i/o for recovery and degraded reads. In FAST, 2012.

[25] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,

D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, et al. Oceanstore: An architecture for global-scale

persistent storage. In ASPLOS, 2000.

[26] J. Li and B. Li. Beehive: erasure codes for fixing multiple

failures in distributed storage systems. In HotStorage, 2015.

[27] F. J. MacWilliams and N. J. A. Sloane. The theory of error

correcting codes. North-Holland, 1977.

[28] S. Mitra, I. Laguna, D. H. Ahn, S. Bagchi, M. Schulz, and

T. Gamblin. Accurate application progress analysis for large-

scale parallel debugging. In PLDI, 2014.

[29] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. F4:

Facebooks warm blob storage system. In OSDI, 2014.

[30] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and

J. Kelly. The quantcast file system. VLDB, 2013.

[31] D. S. Papailiopoulos and A. G. Dimakis. Locally repairable

codes. IEEE Transactions on Information Theory, 2014.

[32] J. S. Plank and L. Xu. Optimizing cauchy reed-solomon

codes for fault-tolerant network storage applications. In

IEEE International Symposium on Network Computing and

Applications (NCA), 2006.

[33] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure:

A library in c/c++ facilitating erasure coding for storage

applications-version 1.2. Technical report, Technical Report

CS-08-627, University of Tennessee, 2008.

[34] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn,

et al. A performance evaluation and examination of open-

source erasure coding libraries for storage. In FAST, 2009.

[35] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and

K. Ramchandran. A solution to the network challenges of

data recovery in erasure-coded distributed storage systems:

A study on the facebook warehouse cluster. In HotStorage,

2013.

[36] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ram-

chandran. Having your cake and eating it too: Jointly optimal

erasure codes for i/o, storage, and network-bandwidth. In

FAST, 2015.

[37] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-

regenerating codes for distributed storage at the msr and mbr

points via a product-matrix construction. IEEE Transactions

on Information Theory, 2011.

[38] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,

and K. Ramchandran. A ”hitchhiker’s” guide to fast and

efficient data reconstruction in erasure-coded data centers. In

SIGCOMM, 2014.

[39] I. S. Reed and G. Solomon. Polynomial codes over certain

finite fields. SIAM, 1960.

[40] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y.

Zhao, and J. Kubiatowicz. Pond: The oceanstore prototype.

In FAST, 2003.

[41] R. Rodrigues and B. Liskov. High availability in dhts: Erasure

coding vs. replication. In Peer-to-Peer Systems. Springer,

2005.

[42] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.

Dimakis, R. Vadali, S. Chen, and D. Borthakur. Xoring

elephants: Novel erasure codes for big data. In VLDB, 2013.

[43] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

hadoop distributed file system. In Mass Storage Systems and

Technologies (MSST), 2010.

[44] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin.

Lazy means smart: Reducing repair bandwidth costs in

erasure-coded distributed storage. In SYSTOR, 2014.

[45] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of

collective communication operations in mpich. International

Journal of High Performance Computing Applications, 2005.

[46] R. Van Renesse and F. B. Schneider. Chain replication for

supporting high throughput and availability. In OSDI, 2004.

[47] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding for

array codes in distributed storage systems. In GLOBECOM

Workshop, 2010.

[48] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding

vs. replication: A quantitative comparison. In Peer-to-Peer

Systems. Springer, 2002.

[49] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush:

Controlled, scalable, decentralized placement of replicated

data. In ACM/IEEE conference on Supercomputing, 2006.

[50] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two

erasure codes in hdfs. In FAST, 2015.

[51] L. Xiang, Y. Xu, J. Lui, and Q. Chang. Optimal recovery of

single disk failure in rdp code storage systems. In SIGMET-

RICS, 2010.

	Introduction
	Primer on Reed-Solomon Coding
	The Achilles' Heel of EC Storage: Reconstruction Time
	Design: Partial Parallel Repair (PPR)
	Efficient single chunk reconstruction: Main PPR
	Reduction in network transfer time
	Computation speed-up and reduced memory footprint
	Reducing disk IO with in-memory chunk caching

	Multiple Concurrent Repairs: m-PPR
	Design and Implementation
	Background: QFS architecture
	PPR protocol
	IO pipelining, caching, and efficient use of memory
	Implementation details

	Evaluation
	Performance improvement with main PPR
	Improving regular repair performance
	Improving degraded read latency

	Improving degraded reads under constrained bandwidth
	Benefit from caching
	Improvement in computation time
	Evaluation with simultaneous failures (m-PPR)
	Scalability of the Repair-Manager
	Compatibility with other repair-friendly codes
	Discussion

	Related Work
	Conclusion

